UCC28056 CRM DCM 控制芯片工作原理

+荐课 提问/讨论 评论 收藏 分享
大家好 我是 TI 的 AC-DC 产品线 应用工程师黄文斌 今天我给大家介绍的议题是 Super power your transition mode PFC 中文翻译为为你的临界模式 PFC 提供超强动力 接下来我们开始第二部分讲解 这部分将详细介绍 UCC28056 这款混合控制的 PFC 控制器 我们一起来看看 这款芯片相比传统的 CRM 是否有一些更改或者改进 UCC28056 在负载减轻下会有如下的表现 当负载减轻的时候 开关频率开始上升 因为开关频率不能无限大 因此最大开关频率将会被限制 一旦开关频率达到这个限制 PFC 就进入断续工作模式 当传统意义上的 DCM 工作时 电感电流的平均值 就不是 1/2 的峰值电流了 它的计算公式是 Vin 乘以 Ton 导通时间除以 2 然后再乘以一个电感 最后在乘一个 δONDCH 其中 δONDCH 等于电感电流上升 和下降时间之和除以整个开关周期 从这个公式来看 这个时候 IAC 就不能完全 等比例于输入电压了 因此 PF 会下降 THD 会上升 UCC28056 在传统的 DCM 基础上 为了保证在整个负载范围内 都有很好的 PF 值 重新计算了导通时间 并保证 Ton 乘以 δONDCH 在每个工频半周期保持恒定 这样 IAC 与输入电压就又成等比例关系了 这样就可以得到比较好的功率因数 左边的图可以看到 在轻载的情况下 由于 UCC28056 使用了 DCM 模式方式 因此开关频率 相比正常开关频率还不到一半 在轻载下它们保证了 最大的峰值电感电流保持基本一致 右边这个图显示了 单纯使用 CRM 时的 开关频率和电感峰值电流的关系图 可以看到 在轻载下 MOS 管的开关频率 都是几十倍正常开关频率 而峰值电流峰值电感电流反而非常小 所以可以看得出来 UCC28056 会有更小的开关频率的范围 这个极大的降低在 MOS 管的 开通损耗和驱动电路的损耗 因此提高了轻载效率 该图对比的 CRM 模式 和 DCM 模式下的 ITHD 随着负载的减轻可以看出 DCM 依然能够保持较低的 ITHD 而 CRM 随着负载的减轻 则会快速的增加 ITHD 这个是因为在 DCM 的模式下 由于限定了峰值电流的值 在过零附近会减小电感电流的过零畸变 因此会有更低的 ITHD 接下来这个图显示的是 UCC28056 在 DCM CRM 切换瞬态中的 详细波形可以看出 在 CRM 工作时 CRM 的电感电流下降到零 或者负电流时完成一个开关周期 它在第一个开关第一个谷底的时候 就完成一个开关周期 而 DCM 是在第二个谷底 或者是后面更多的谷底 第N个谷底来实现 另一个开关周期的开始 同时为了保证 CRM 和 DCM 的正常工作时不会频繁切换 在芯片内部做了回差 保证 DCM 和 CRM 即便在瞬态下 也不会来回切换 接下来我们介绍 UCC28056 的另一个功能 输入线电压检测和输入线电压的前馈 从这个图上可以看得到 输入线电压是通过芯片的 ZCD pin 脚来进行检测的 将检测到的输入线电压信息叠加到 Vcomp 保证在计算 Ton 和 Tdcm 时 采用的 Vcomp 电压仅仅代表输入功率而已 输入电压没有关系 接下来这一页 PPT 主要介绍了 UCC28056 的一个比较重要的功能 该功能是输出电压的运放 使用的是非线性运放 当输出电压与基准的误差超过 3% 那么这个非线性运放的增益 提高到原来的六倍 这样的非线性增益 可以在负载动态情况下 更加快速地对环路补偿电路 进行充电和放电 这样就能保证 UCC28056 有非常好的动态响应 本页介绍了 UCC28056 的保护功能 其中 OCP1 是主要周期的过流保护 它会中断当前的开通时间 OCP2 是用于电感电流连续的保护 Ovp2 是独立的第二种方式的过压保护 Brown-in 功能保证该芯片 必须在高于 85V 才能启动 VCC UVLO 则保证 MOS 管驱动 总是有足够的电平来驱动 MOS 管 防止驱动过低导致 MOS 管工作在线性区域 OTP 是芯片的过温保护功能 当芯片的结温超过 TTSD-R 时 芯片自动关闭驱动芯片来保护芯片 上图中标示红色的两个保护 会维持一秒再尝试重启 从右边这个图也可以看出 其中 ZCD 这个 pin 脚集成了四个保护 下面简单介绍一下 UCC28056 在负载变化过程中 是如何提轻载效率的 是如何提轻载效率的 满载情况下因为导通损耗占主导 因此 UCC28056 总是工作在临界模式 随着负载的减轻 开关上升来保证 UCC28056 还工作在临界的模式 再进一步降低负载 UCC28056 会进入 DCM 模式 TDCM 的计算可以保证电源的效率达到最优 在这个阶段 MOS 管处于谷底开通 减少了一部分开关损耗 如果负载再进一步减少 UCC28056 就会进入间歇模式 进一步减小有效的开关频率 这一页阐述了 UCC28056 工作在 DCM 模式下的谷底开通的波形 一旦进入 DCM MOS 管总是在 Vds 电压谷底进行开通 减小了开通损耗 提高了轻载的效率 我们可以通过更改 MOS 管的 GS 两端并联电阻 来改变 MOS 管的开通的延迟 从而来优化 MOS 管在谷底哪个位置进行开通 下图罗列的这两个图表 分别是 115 伏输入和 230 伏输入情况下 UCC28056 与安森美的 NCP1608 在整个负载范围内的效率对比 可以看出因为在重载下 两个芯片都工作在 CRM 模式 因此重载下的效率基本上是相当的 但是从轻载效率来看 UCC28056 由于使用了 DCM 和间歇模式 使得在轻载下的效率相比 NCP1608 有非常明显的提升 下面这个表格对比了 NCP1608 和 UCC28056 在待机功耗上的对比 可以看到 UCC28056 在待机功耗上的优势非常明显 为了能满足 COC Tier2 和 DOE 的标准 这个这个标准是整个电源的待机功耗 不能超过 150 毫瓦 因此在待机状态下 UCC28056 可以一直开通 而不需要关闭 这样可以减小系统的成本 包括关闭 PFC 的光耦 这样可以减小系统的成本 包括关闭 PFC 的光耦 同时可以保证系统在退出待机模式下 具有更快的系统响应速度 同样的 PFC 不关机 母线电压范围比较固定 对 DC-DC 的设计也会变得更加容易 下面这一页简单介绍了 UCC28056 在不需要使用辅助绕组 来采集 ZCD 信号所带来的好处 我们刚才也提到了 ZCD pin 脚的主要功能有如下四个 过零检测 电感电流采样 输入电压检测 第二级的过压保护 这样对客户可以有如下的好处 因为辅助绕组需要手工绕制 因此可以降低成本 第二在 PCB Layout 上变得更加容易 在一些低功率的场合减少客户定制磁芯 可以加快设计的速度 接下来我们介绍 UCC28056 在音频噪声上的表现 现在很多的音频噪声 都来源于 Burst Mode 阶段 或者是在 DCM 模式下 当期望过程从第一个谷底到第二个谷底 切换的时候也会导致音频噪声 那么 UCC28056 在 Burst Mode 阶段 使用软开软关的方式来减少音频噪声 同时 UCC28056 采用固定的 TDCM 方式来确保 DCM 时间在一个线电压周期保持不变 同时加入回差保证 DCM 不会轻易地从一个谷底向其它谷底变化 这两个措施都保证了 UCC28056 拥有最好的音频噪声的表现 下面这个表格罗列的是业界主流的 单向 CRM 模式的 PFC 芯片 分别有 TI 的 UCC28056 NXP TEA19162 安森美的 NCP1612 仙童的 FAN6961 以及 Sanken 的 SSC2016S MPS 的 MP44014x 以及 ST 的 L6562 我们通过下面的这几个维度来进行对比分析 它们来对比分析 分别为 PFC 是否具有的 DCM 工作模式 是否有 Burst Mode 和降低芯片供电电流消耗 是否具有非线性运放来加快动态响应 pin 脚的数量 是否有输入线电压前馈 是否有两级 OCP 保护 精准的谷底开通延迟是否可调 我们可以看出其它芯片的厂家 或多或少都有一些功能无法实现 但是 UCC28056 都满足了这些要求 关于 UCC28056 的介绍就到这 谢谢大家
课程介绍 共计5课时,36分8秒

HVI系列 - 为你的临界模式 PFC 提供超强动力

TI 电源 PFC DCM CRM UCC28064 UCC28056 HVI系列培训

本课程将介绍 TI 新开发的两款临界模式 PFC 控制芯片,简单介绍了 PFC 工作特点,CRM 工作原理分析,以及 UCC28056 CRM/DCM 控制芯片和 UCC28064 CRM 控制芯片的特点和原理

推荐帖子

RT Thread IPC总结
1、关中断的方法可以实现互斥,但是这时候是无法响应中断的 2、调度器上锁可以实现多任务的互斥,但是无法实现与中断的互斥 3、信号量,轻量级的互斥机制,因为初始值不一定为1,所以他没有所有者(拥有者)的概念,且没有解决优先级翻转的问题 4、互斥量是管理临界资源的一种有效手段,它使用优先级继承方法解决了优先级翻转的问题 5、事件主要特点是可以实现一对多,多对多的同步。事件集的关联形式可以是“逻...
Jacktang 微控制器 MCU
msp430内部含有ADC12模块程序实现
程序主要实现的是一个比较通用的初始化程序,内容如下: char ADC12Init(char n,char channels[],char rep) {     if(n>15)         return 0;     //SHT0_0     ADC12CTL...
fish001 微控制器 MCU
C2000浮点运算注意事项——CPU和CLA的差异及误差处理技巧
     C28x+FPU架构的C2000微处理器在原有的C28x定点CPU的基础上加入了一些寄存器和指令,来支持IEEE 单精度浮点数的运算。对于在定点微处理器上编写的程序,浮点C2000也完全兼容,不需要对程序做出改动。浮点处理器相对于定点处理器有如下好处: 编程更简单 性能更优,比如除法,开方,FFT和IIR滤波等算法运算效率更...
Jacktang 微控制器 MCU
MSP430AFE253定时器中断怎么老进不去
一下是定时器部分的程序 ,之前在149上调试成功,换了这款单片机 不只为什么进不了中断,请高手指点 void Timer_int() {    TACTL=TACLR;    TACCTL0|=CCIE;    TACCR0=1000;   TACTL|=TASSEL_1+MC_2; } int ma...
sophia516 微控制器 MCU

luck_gfb

它在满足卓越功能前提下 可以做到非常简单 同时成本非常低.

2020年09月07日 17:34:34

大明58

为你的临界模式 PFC 提供超强动力

2020年02月26日 11:50:20

lai28450748

学习

2020年01月11日 14:05:02

59477cq

初次了解此类型产品,有收获

2019年11月18日 19:11:51

hellokt43

好好学习天天向上。。。。

2019年04月09日 14:21:14

hawkier

努力学习,不断进步!

2019年02月21日 16:05:45

wudianjun2001

学习

2019年01月24日 11:06:13

qi777ji

看视频学习

2019年01月15日 10:09:39

weixiu123

学习一下

2019年01月09日 19:34:07

采样电阻

控制芯片的原理

2019年01月08日 09:09:46

htwdb

学习一下

2018年12月31日 08:15:49

百万千万

study hard every day

2018年12月24日 12:16:11

分享到X
微博
QQ
QQ空间
微信

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved