TI教室 >
产品 >
微控制器 (MCU) >
SimpleLink MCU >
SimpleLink 无线 MCU >
SimpleLink™Wi-Fi®CC32XX电源管理框架 > SimpleLink™Wi-Fi®CC32XX电源管理框架
- 课程目录
- 相关资源
- 课程笔记
Welcome to the PowerManagement Framework tutorial
for the CC3220 wireless MCU.
The objective ofthis tutorial is
to understand various low powermodes for the CC3220 device,
and to familiarize the user withthe Power Management Framework.
After this tutorial, youwill be able to understand
the various low power modessupported by the CC3220 MCU,
work with the Power ManagementFramework within TI Drivers,
configure the peripheralsusing TI Drivers,
initialize and enable thePower Management Structure,
specify I/O parking for lowpower modes, and finally,
debug the PowerAware application.
The CC3220 device supportsthe following power modes--
sleep mode-- which is a standardlow power mode for the ARM
Cortex-M4 processor, lowpower deep sleep mode--
which I'll be referring to youas LPDS for this or tutorial.
In this mode, the functionalclock and peripheral clocks
are gated--
to slow clock continuesrunning in the background.
Lastly we have hibernate,which is an extremely low power
mode that shuts down boththe application and network
processors.
The slow clock continues torun in this mode as well.
This diagramshowcases the features
of each of these power modes,along with the relative current
consumption and wake-up time.
The arrows is on theright depict two things.
One, that thecurrent consumption
decreases from sleepto hibernate, and also
conversely, that thewake-up time increases
from sleep to hibernate.
You can see how theretention of the RAM, CPU,
and peripheral Contexts areaffected by the various power
modes and what wake-upsources can be used.
Let's go through eachcities a little more detail.
In sleep mode, theprocessor clock
is stopped, whichhalts code execution.
The peripheralconfigurations are
retained althoughtheir clocks are gated,
which results in the stoppingof any ongoing peripheral
transaction if the sleepclock is not enabled.
The contents of SRAM andthe slow clock counter
are also retainedin the sleep mode.
The wake-up time is veryshort in sleep mode,
and any interruptcan wake up the MCU.
Something to note here isthat the debugger disconnects
when the MCU enters sleep mode.
Like sleep mode, low power deepsleep mode gates the processor
clock while the slowclock counter is retained.
Unlike sleep mode,the peripheral clocks
are also gated, resultingin configuration loss.
However, the SRAM canbe retained either fully
or partially.
The 256 kilobytes of SRAMis divided into four blocks
of 64 kilobytes each.
Any number of blocks can beretained in low power deep
sleep, but a partialblock cannot be retained.
This means the peripheralconfiguration can be retained
in RAM by the softwarebefore entering LPDS
and can be restoredby retrieving
from RAM after waking up.
The wake-up time isaround 3 milliseconds
executing software overhead.
In LPDS, not every interruptcan wake up the MCU.
Only a specified set ofprogrammable wake sources
are available for this mode.
The availableawake sources are--
an interrupt from the networkprocessor, LPDS wake timer--
the duration of which can bespecified in the application.
Also, one of a subsetof GPIOs can be set
as an external wake-up source.
Like sleep mode, thedebugger gets disconnected
when the MCU enters LPDS.
LPDS only affectsthe application MCU
and not the networkprocessor, which essentially
means any networkingconfiguration, including
the connection to an AP, andall internet socket connections,
will be retained acrossentry to and exit from LPDS.
With correctparking of the pins,
current consumption canbe as low as 1 milliamp
with the devicemaintaining the connections
to the AP and the internet.
This mode is ideal forscenarios where the application
remains idle for amajority of the time,
but still needs to remainconnected to the network
so that it can performsome action upon receiving
a signal from the network.
Hibernate, unlikeLPDS and sleep,
affects both the appsand NWP processors,
resulting in extremelylow current consumption.
It essentiallyshuts down the chip
with only a small numberof registers retained.
The slow clock counter iskept alive across this mode.
Network configurationsare also lost.
An interrupt from theslow clock counter
can wake the systemfrom hibernate.
Also, a specified set of GPIOscan be set as a wake-up source
simultaneously.
Though the current consumptionis extremely low in this case,
it has a relatively largewake-up time than LPDS.
This mode is ideal forthe cases where the device
will be inactivefor most of the time
and will only have to performsome action periodically,
or based on some GPIO activity.
So far, we havediscussed the low power
modes and their features.
In the next slides, we'lldiscuss, from the software
perspective, how do youuse low power functionality
in an application.
The Power ManagementFramework, which
will be referred to as PMModule, or PM Framework
in this tutorial, is partof the TI Drivers library,
and is responsiblefor exercising
the various low power modes.
Though it can be usedalone without exercising
the peripheral driversfrom this library,
it is highly recommended to useTI Drivers for the peripherals
as well.
The reason being, that allthe drivers are power aware,
and register themselves withthe Power Management Module.
This simplifies the managementof peripheral configuration,
where the MCU iscycling through LPDS.
TI Drivers are a collection ofeasy to use interface drivers
for most of the peripherals.
The interface is similar withTI Drivers for other MCUs
from Texas Instruments.
It sits atop of driverlib,which is a low level
peripheral driver library.
Use of generic RTOS APIs makethe drivers re entrant, which
means they can work with anyRTOS or even without an RTOS,
provided a portinglayer is provided.
The CC3220 SDK providesthe porting layer
for TI RTOS, Free RTOS,and non-OS environments.
These drivers arepower aware and are
supported for the followingtool chains in the SDK--
Code Composer Studio,which is a free IDE
from Texas Instruments, IAREmbedded Workbench, and GCC.
Like previouslymentioned, PM Framework
is integrated with TI Drivers.
Each device driver registersthemselves with the PM Module
when opening the interface.
The application needs toinitialize the PM Module
at the start, thoughit can be enabled
or disabled in the run time.
Typically, upon entering LPDS,the peripheral clocks are gated
and the peripheralconfigurations will be lost.
The PM Module takes careof enabling the clock
after coming out of LPDS.
It also restores the peripheralconfiguration to the state
that it was beforeentering LPDS.
If the pins are not parkedproperly before entering LPDS
it can lead to current leakage.
Therefore, it is necessaryto park the pins.
PM Module takescare of pin parking
as per the parkingstructure, which
is specified wheninitializing the PM Module.
Although the PMModule takes care
of managing the peripheralconfigurations and pin parking,
it still allows forregistration of hook functions
for various power events likeentering LPDS, exiting LPDS,
and entering Hibernate.
If working in an RTOSenvironment, and PM Framework
is enabled, PowerManagement checks
with all the registereddrivers to check if the MCU can
be put into LPDS.
Only after confirming thatnone of the peripherals
is currently activedoes it allow
the apps MCU to enter LPDS.
Also, it makes sure that ithas sufficient time to cycle
through an LPDS cycle.
So if a task is about to beactive again very shortly,
Sleep load is exercisedinstead of LPDS.
If working in anon-OS environment,
the Power Management Functionmust be called explicitly
by the application,after which, it
makes similar checks todecide if the app's MCU can
enter LPDS.
Unlike LPDS, afunction call needs
to be made by the applicationto put the SOC into Hibernate.
Regardless of whetheror not the PM Framework
is enabled, onceits API is invoked,
the system will enter Hibernate.
The duration of time thedevice will remain in Hibernate
is passed as anargument to a function.
The device will enterHibernate if the duration is
above a minimumamount, and will remain
so until either thetimer has elapsed
or there is anexternal trigger event.
The GPIO wake-up sourcecan be specified in the PM
Configuration Structure.
I/Os can be retainedduring Hibernate,
which are also specified inthe PM Configuration Structure.
The developer needs to makesure of the following things
when using Hibernate mode--
stop the network processorbefore entering Hibernate,
disable the retention afterwaking from Hibernate,
the retention for SFlash pins,which are specified as group 1,
is already disabledby the boot loader.
For other groups,the retention must
be disabled by theapplication, but only
after reconfiguring the pins.
A sample PowerManagement Structure
and a brief explanationfor each of these fields
is provided below.
The pin parkingstructure for LPDS
can be specified in PMConfiguration Structure.
It is extremely importantto park the pins
appropriately to getlower current consumption.
Following are the possibleparking states for any pin.
I sample parkingstructure is as follows--
I/Os can be retained inhibernate mode as groups,
individual retention forthe I/Os is not supported.
Shown here are the four groupswhich consume most of the I/Os.
Again, make sure todisable retention
after waking up from Hibernate.
The debugger willdisconnect no matter which
low power the device enters.
It is possible toreconnect the debugger
once the device comes out ofLPDS and stays in active mode.
Using settings which keep thedebug interface alive in LPDS
and do not park JTag pinsare necessary if it is wished
to reconnect to the debugger.
To reconnect the debuggerafter waking up from LPDS,
the application needs to makesure the app's MCU does not
enter LPDS again immediately.
The following canbe used to do so--
disable the power policyand LPDS exit hook function,
or put a usercontrolled while loop
which can be brokenafter reconnecting back
from the debugger.
Most of the settingsshown thus far
are used in thefollowing SDK examples.
Idle Profile--this exercises LPDS
and is an RTOS-based examplewith different RTOSs being
used per CCS and IAR.
Idle Profile Nonos exercisesLPDS and is a nonon example.
Sensor Profile is an applicationthat exercises Hibernate mode.
All of these examples
课程介绍
共计1课时,12分32秒
SimpleLink™Wi-Fi®CC32XX电源管理框架
欢迎学习适用于 CC3220 无线 MCU 的 电源管理框架教程。 本教程的 目标是了解 CC3220 器件的 各种低功耗模式, 并使用户熟悉 电源管理框架。 在学习本教程之后, 您将能够了解 CC3220 MCU 支持的各种 低功耗模式, 在 TI 驱动程序内 使用电源管理框架, 使用 TI 驱动程序 配置外设,初始化 并启用电源 管理结构, 为低功耗模式 指定 I/O 设置, 最后调试功率 感知应用。
猜你喜欢
换一换
推荐帖子
- 如何处理未使用的运放
- 我们在这里所谈论的 “未使用的运放” 不是指在芯片储藏箱或防静电袋中的运放;而是指在同一个封装里面的多个运放中未被使用的部分。最近论坛中的一个提问促使我来研究这个问题,在处理这个问题时,我无意中看到一篇由我同事Todd Toporski发表的好文章(点击此处,查看原文)。他非常出色地概括了关于这个问题的几个重要方面及其原因。这里,我总结一下并加入了一些自己的想法。 最好将未使用的运放连接为一个带...
-
maylove
模拟与混合信号
- 单电源在运算放大器中的应用含义
- 在过去只使用电池的时候,单电源完全就是个行业术语。如果市场营销人员将“单电源”标签贴在放大器上,所带动的兴趣和销量将会体现出这类产品的吸引力。现在仍是如此,但您的确需要知道这个词的真正含义。 ... 在过去只使用电池的时候,单电源完全就是个行业术语。如果市场营销人员将“单电源”...
-
qwqwqw2088
模拟与混合信号
- 零线和地线,别不当回事!
- 一、零线和地线区别 零线是在供电端(发电厂、变电站、变压器)接地,或在入户前重复接地,是工作接地线,是输电线路的一部分,电流经电厂→火线→负载→零线反回电厂。 地线在用户端接地,和用电电器的金属外壳或人体可触部位连接,使机壳与大地等电位,保护人体不触电。零线不与输电线路构成回路,正常情况下没有电流。注意两者的区别: “ 1.零线和地线这两个是不同的概念,不是一回事,千万别互换或混接。...
-
qwqwqw2088
模拟与混合信号
- msp430f5438 RTC日历怎么校准以及怎么跟现实时间同步?
- 一个项目要日历,不知道msp430f5438 日历准不准以及怎么跟现实时间同步以及怎么校准。如果给5438断电的话是不是内部的原先对日历校准的数据丢了,是不是上电又要校准这样用好象不方便?我这样理解对不对,初次使用MSP430,希望得到大家的帮助!...
-
lyzjhzdz
微控制器 MCU