5.2 - 运算放大器:带宽 2

+荐课 评论 收藏 分享
继续观看,请前往德州仪器官网登陆myTI账号 登录myTI 登录说明 及FAQ 还没有myTI账号?现在注册

为广大用户更方便地访问EEWORLD和TI网站, 享受TI官方渠道便利,TI教室将与官方myTI进行连通,初次登录可能需要1~2分钟时间,还请大家多多支持。
如需帮助或查看详情请点击

  • 课程目录
  • 相关资源
  • 课程笔记

大家好 欢迎来到 TI Precision Labs 德州仪器高精度实验室 本次视频将介绍 运算放大器的 Bandwidth 带宽的第二部分 我们将探讨 open loop gain 开环回路增益 closed loop gain 闭环回路增益 gain bandwidth product 增益带宽积 Quiescent Current 静态电流与带宽的关系 也将仿真电路的带宽 并验证我们的计算结果 运算放大器的开环回路增益 或 Aol 代表由运算放大器 施加到输入端电压差的增益 运算放大器的 Aol 是无限大 然而真实世界的运算放大器 有超过 100 万 V/V 或 120dB 的开环回路增益 为了使一个放大器稳定 Negative feedback 负回授是必要的 可以经由 Rf 和 R1 来实现 有时被称为闭合回路 Rf 和 R1 代表 β 的网络 或回授系数 β 是经由测量 Vout 回授到运算放大器的 反相输入端变化来求得 在这个电路中我们看到 Rf 和 R1 产生一个电压分压器 因此 β=R1/(R1+Rf) 除运算放大器的开环回路增益 我们有所谓的闭环回路增益或 Acl 该方程 Acl=Aol/(1+Aolβ) 其中的 Aolβ 被称为回路增益 如图所示 这个方程式可以重新整理 闭环回路这一方程式可以简化 是由于有非常大的回路增益或 Aolβ 纵观回路增益公式可以看出 当 Aolβ 增加到无限大 你可以忽略分母中的 1 公式可简化为 Aol/Aolβ 将分子分母的 Aol 相消可得到 1/β 代入 β 可以得到 1+Rf/R1 的 闭环回路增益 这是一个常见的 none inverting 同相放大器闭环回路增益公式 重点是这个公式 只适用于开环回路增益非常高时 稍后我们将看到 当开环回路增益低会发生什么事情 然而在现实世界中 运算放大器的开环回路增益 具有低频的 dominant pole 主极点 如图所示 可以被看做是一个 RC filter滤波器 此仿真描绘了真实世界 运算放大器开环回路增益 在直流或低频 Aol 是非常大的 在这种情况下 它是 120dB 或 100万V/V 随着频率的增加 Aol 以 -20dB/dec 的速率降低 我们看到在 10MHz 时 开环回路增益为 0dB 或 1V/V 现在我们明白开环回路增益 会随着频率降低 此现象如何影响我们的闭环回路增益呢 回想一下 Aolβ 被称为回路增益 如果我们绘制了开环回路增益和 1/β 在对数轴 回路增益为两条曲线之间的差值 数学证明回路增益是 Aol 减掉 1/β 如底下的方程式所示 在这个例子中 1/β 为水平虚线在 20dB 注意 闭环回路增益在低频时为 1/β 在高频时为 Aol 曲线 还要注意在这 1/β 曲线和 Aol 曲线交错的点 是闭环回路带宽 让我们更深入地看看为什么闭环回路增益 在低频时为 1/β 而在高频时为 Aol 在低频时回路增益或 Aolβ 很大 请注意闭环回路增益为 Aol/(1+Aolβ) 所以对于较大 Aolβ 可以忽略 1 这一项 公式可简化为 Aol/Aolβ 将分子分母的 Aol 相消可得 1/β 在这种情况下 1/β 是一个熟悉的同相放大器增益方程式 1/β 是一个熟悉的同相放大器增益方程式 值为1+Rf/R1 在高频时 Aolβ 很小 请注意 闭环回路增益为 Aol/(1+Aolβ) 所以对于小的 Aolβ 值 就可以忽略 Aolβ 这样一来就只剩下 Aol/1 或者说就是 Aol 因此当 Aolβ 变小 闭环回路增益跟随 Aol 曲线 我们定义的电路的带宽为 1/β 和 Aol 曲线相交的频率 因此运算放大器数据表中 Aol 曲线可以近似到电路所需的闭环回路增益带宽 然而请注意 X 轴是对数的 因此以图形方式选定的带宽可能不够精确 另一种方法来确定带宽 是使用运算放大器数据表中的增益带宽积产品规格 增益带宽积是线性增益和带宽的乘积 因此在给定两个变数中的一个 可以得到另外一个解 例如让我们计算 OPA827 在 100V/V 的带宽吧 从数据表我们可以得知 增益带宽积为 22MHz 为求解带宽 从增益带宽公式告诉我们 带宽为增益带宽积除以线性增益 将 OPA827 增益带宽积 22MHz/100V/V 的增益 可以得到 220kHz 带宽 此计算可由观察数据表中 OPA827 开环回路增益来验证 如果画一条水平线在 100V/V 或 40dB 的闭环回路增益 直到它相交 Aol 我们找到了相应的带宽 大约为 200kHz 可以注意到 通过计算我们发现 带宽为 220kHz 它解决了图解可能错误地解释带宽为 200kHz 请注意计算出的带宽 须当 Aol 局限于 -20dB/dec 的速率下降才是有效的 虽然大部分的运算放大器都符合 但也有些特定的增益带宽积是有限的范围 此外考虑到数据表有增益带宽积 和 Aol 曲线的典型值 通常可以预期该值在室温下的变异数高达± 30% 在规定的温度范围外 可能有附加正负 30% 误差的变化 因此当考虑到放大器的带宽时 建议设计时保留您的设计裕度 现在让我们与 TINA-TI 仿真做比较 这里我们将一个 OPA140 设计为同相放大器组态 100V/V 或是 40dB 的闭环回路增益 该 OPA140 具有 11MHz 的增益带宽积 代入我们的闭环回路增益 100V/V 可以求出带宽为110kHz 在这里我们仿真的电路的闭环回路带宽 在 -3dB 点或 37dB 仿真带宽为 118kHz 虽然不完全一样 但我们计算和仿真结果是正相关的 最后让我们来看一下 一系列 TI 运算放大器的增益带宽 和其相对应的静态电流 Iq 此页我们列出增益带宽范围 从 12kHz 到 600MHz 放大器 OPA369 是一个非常低带宽的放大器 该电路是特别设计为非常低的静态电流 仅有 0.8uA 称为微功率电路 1MHz 为普遍放大器的带宽范围 如 OPA277 而 OPA350 和 OPA211 则具有更宽的带宽 以方便驱动 A/D 转换器 和其他高带宽应用 对非常高速应用中 可使用如 OPA835 和 OPA847 在一般情况下较宽的带宽运算放大器 需要较多的静态电流 不过有例外如 OPA835 那么为什么带宽和静态电流有关联 让我们来看看双极性和 CMOS 晶体管的物理关系 请注意 这里不是要深入理解晶体管理论 来了解放大器的带宽 这里的关键是 表示放大器带宽和静态电流间的物理原理 观察双极晶体管和 MOSFET 的 Transductions 转导或电流增益 可以看出 collector 基极和 drain 漏极 电流的直接关系 转导取倒数可得阻抗或 rgm rgm 是运算放大器内部第一级的动态输出阻抗 此输出阻抗驱动米勒电容 Cc rgm 和 Cc 的串联组合形成一个低通滤波器 该低通滤波器的主极点产生放大器内部的带宽 事实上你可以看到第三个方程式 是 RC 带宽公式 BW=2πRC 在最后的方程式 我们代入原有的 gm 公式来说明 gm 带宽的关联 其显示增加电流消耗 直接增加双极性运算放大器的带宽 但是如果是 MOSFET 带宽将依漏极电流平方根的比例增加 所以相较于双极晶体管 MOSFET 需要增加更大的电流来增加带宽 总结 这个视频讨论开环回路和闭环回路增益 增益带宽积 静态电流与带宽 我们还仿真电路的带宽 并显示带宽与我们计算结果的关联性 感谢您的时间 请尝试测验来检视对这个视频内容的理解吧
课程介绍 共计8课时,1小时10分43秒

[高精度实验室] 运算放大器 : 5 带宽

Precision Labs 运算放大器 带宽 信号链 高精度实验室 TIPL

您是否知道在计算运算放大器带宽时始终应该使用非反相增益?您知道带宽影响 Iq 的原因吗?

除了回答这些问题,我们将向您展示您曾经想知道的关于运算放大器带宽的几乎所有信息,其中包括:

    * 了解在波特图中如何使用 Aol、环路增益和 1/beta 来预测放大器基于频率的性能。

    * 使用电阻器、电容器和放大器频率限制来建立极点和零点位置方程式。

    * 实际运用在波特图上绘制极点与零点的技巧,并且介绍用于闭环带宽的图形和数学计算。

    * 学习如何使用波特图和范围结果将时域与频域联系起来。

    * 通过使用放大器内部电路的简化模型,了解带宽与 Iq 之间的关系。

该视频系列讲述运算放大器带宽理论,并将该理论运用于动手实验,其中包括使用真实电路和测试设备进行的 TINA-TI 电路仿真和实验。

展开

  • 相关产品
  • 样品申请
  • 文档下载
  • 软件/工具
  • 参考设计
  • 技术支持

推荐帖子

有关C6000中编程优化
1. 对数据类型的考虑     在编写C语言程序时,要认真考虑数据类型的尺寸。C6000编译器对每种数据类型都确认了一个尺寸,其分配形式如下: 字符型(char)    8bit 短型(short)     16bit 整型(int)       32bit 长型(lo...
Aguilera 【微控制器 MCU】
取样电阻的工作原理
一,电流检测电阻的基本原理:      根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比.当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的.然而如果电流达到10-20A,情况就完全不同,因为在电阻上损耗的功率(P=I2xR)就不容忽视了.我们可以通过降低电阻阻值来降低功率损耗,但电阻两端的电压也会相应降低,所以基于取样分辨率的考虑,电阻的阻值也...
火辣西米秀 【模拟与混合信号】
IAR IDE for MSP430、8051、ARM等平台的结合使用
     以前很长一段时间使用IAR作为MSP430的开发平台,前几天一个无线监控的项目用到了Zigbee(CC2530),于是开始使用IAR作为8051的开发平台。     于是直接下载安装了IAR for 8051的软件,但是却发现了问题:     1、无论是8051的开发...
Aguilera 【微控制器 MCU】
功夫不负有心人?TMS320F28379D调试经历
最近想用一下TMD320F28379D的4路ADC,原因是STM32G474的4路ADC采集到的数据一直有些微小的不正常 手里虽然有专用的ADC芯片和评估板,但苦于一直没有FPGA作高带数据采集,无法发挥ADC的最佳性能。 自己已经买了FPGA芯片准备自己画一套板,从零开始学FPGA,但是时间不允许,最后只能试着啃一啃这个C2000。 TI的单片机里MSP430是最好用的,不过最...
littleshrimp 【微控制器 MCU】
分享到X
微博
QQ
QQ空间
微信

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved