logo 大学堂

电源设计小贴士44_2:如何处理高di/dt负载瞬态_2

TI 电源设计 负载瞬态 电源保护 共1课时 6分34秒
简介

在《如何处理高di/dt负载瞬态(上)》中,我们讨论了电流快速变化时一些负载的电容旁路要求。我们发现必须让低等效串联电感(ESL)电容器靠近负载,因为不到0.5 nH便可产生不可接受的电压剧增。实际上,要达到这种低电感,要求在处理器封装中放置多个旁路电容器和多个互连针脚。本文中,我们将讨论达到电源输出实际di/dt要求所需的旁路电容大小。

为了讨论方便,图1显示了电源系统的P-SPICE模型。本图由补偿电路电源、调制器(G1)和输出电容器组成。内部还包括互连电感、旁路电容负载模型、DC负载和步进负载。

powertip45_01.GIF

图1 简易P-SPICE模型辅助系统设计

首先,你需要决定是将电源和负载看作一个个单独的“黑匣子”,还是把问题当作一个完整的电源系统设计来处理。如果使用系统级方法,你可以利用负载旁路电容来降低电源输出电容,从而节约系统成本。如果使用“黑匣子”方法,你要单独测试电源和负载。不管使用哪种方法,你都要知道负载需要多大的旁路电容。

首先,估计电源和负载之间的互连电感和电阻的大小。这种互连阻抗(Linterconnect) 形成一个旁路电容器 (Cbypass) 低通滤波器。我们假设电源输出阻抗较低。利用该低通滤波器的特性阻抗 (ZO)、负载步进值 (Istep) 和允许电压波动(dV),建立旁路滤波器要求(方程式1-2):

powertip45_02.GIF 方程式 1

powertip45_03.GIF 方程式 2

求解方程式2得到Z0,然后代入方程式1,得到方程式3:

powertip45_04.GIF 方程式 3

有趣的是,所需电容大小与负载电流的平方除以允许扰动的平方有关,因此要仔细计算这两个值。

互连电感的范围从并列电源的几十nH,到远距放置电源的数百nHs。一条较为有效的经验法则是,每英寸增加15 nH左右的互连电感。负载步进为10安培且允许扰动为30mV时,旁路要求范围为5 nH的500 uF到500 nH的50 mF。

另外,这种滤波器还降低了电源的负载电流上升速率。如果无损滤波器由一个电流方波激励,则电感电流为正弦。通过对方程式4-7中的电流波形求微分,可以计算得到上升速率。

powertip45_05.GIF 方程式 4

powertip45_06.GIF 方程式 5

 方程式 6

powertip45_08.GIF 方程式 7

互连电感为5 nH,旁路电容为500 uF时,10安培步进变化可形成0.2 A/uS电源电流上升速率。更大的电感可产生更低的di/dt。这些数值比系统设计人员所规定的值要小得多。

使用系统级方法时,要在最大化环路带宽的同时,最小化总电容。现在,请您思考如何使用“黑匣子”方法。你必须在没有旁路电容和最大期望旁路电容的情况下,让电源稳定。如前所述,互连电容会推高负载的旁路电容要求。使用“黑匣子”方法时,这反过来又会影响电源的电容。连接电容范围确定了电源的交叉频率范围。在电压和电流两种模式下,两者均成比例关系。你可以最大化无负载电容的交叉频率,但只要连接负载,交叉频率就会急剧下降。

表1对举例系统三个互连电感的要求电容器进行了比较。通过改变互连电感、计算负载旁路电容并设计电源的相应输出级和控制环路,得到比较数据。案例1的负载和电源并列放置;案例2电源和负载之间的互连电感大小为中等。案例3中,使用线缆连接的电源的电感极高。要求旁路的多少直接与互连电感有关。

本例中,案例 3 是互连电感的 100 倍,旁路电容也是如此。这在电源设计中形成纹波,原因是电源在有和没有旁路电容器的情况下都必须保持稳定。很明显,第一种方法更好,因为它使用的电容器最少,成本最低。案例2中,互连电感受到一定的控制,电容器数量有一定增加。案例3中,大量的互连电感带来了严重的成本问题。案例2和案例3也都有一个好处:独立的电源测试。

powertip45_09.GIF

表 1 利用系统级方法降低电源系统成本

图 2 对小和大互连电感的负载瞬态期间的输出电压变化模拟情况进行了比较。小电感响应快速渐次减弱,而大电感则并非如此,花费了较长的时间才稳定下来。这是由于特性阻抗更高以及谐振频率更低。另外,如果负载电流在该谐振频率有规律地跳动,则会出现极宽且具破坏性的电压变化。

powertip45_10.GIF

图 2 电压振铃成为大互连电感的一个问题

总之,高di/dt负载要求小心谨慎地进行旁路设计,以保持电源动态调节能力。在负载和旁路电容器以及旁路电容器和负载之间,必须使用低电感互连。系统级方法可实现一种成本最低的解决方案。为了系统测试方便,许多系统工程师都忽略了这种通过降低电源电容实现成本节省的解决方案。

以后,我们将对一些根据经验所得的结论进行讨论,以确定同步降压结构的最佳栅极驱动计时方案,敬请期待。

猜您喜欢

推荐帖子

Linear Power Control Of GSM Amplifier Power (2)
Once the slope and the intercept are known, the required code for any transmit power level can be calculated using the formula:The RF power-detection method suffers only ? dB error for an output-power
fly 无线连接
论文 源码公开的mcs-51单片机的宏汇编器中文版
论文 源码公开的mcs-51单片机的宏汇编器中文版
maker 51单片机
低噪声前置放大器电路的设计方法
前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PDA设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源
fish001 模拟与混合信号
WWDG窗口看门狗的一个喂狗疑问?
翻译文档有这么一句话:如果启动了看门狗且允许中断,当递减计数器等于0x40时产生早期唤醒中断(EWI),它可以被用于重装载计数器以避免WWDG复位。如果我都在中断里面喂狗,假如程序跑飞了,但中断还是可以进入的,那么喂狗还将继续。这个窗口看门狗不是就没用了吗?一般要如何使用这个WWDG
fewcome stm32/stm8
请教一个关于inout管脚的问题
在程序里使用一个分频后的时钟信号CLK(从另一片芯片给过来的),但是使用的时候,在某一特定条件下我要拉高或者拉低这条时钟线,想了一下需要定义CLK为inout信号,才能在程序里对其操作。这样会有几个问题:1.定义某条件拉高时钟线,如果我的CPLD驱动能力没有前面的芯片强,会不会出现拉不上去的情况;2.定义某条件拉低时钟线的话,如果正好在CLK的高电平周期,会不会灌到CPLD管脚一个比较大的电流,带
pouty7447 FPGA/CPLD
关于蓝牙认证的内容
蓝牙认证内容包括如下几个方面:一、射频(RF)一致性测试二、协议(Protocol)一致性测试三、配置文件(Profile)兼容性测试四、符合性声明五、相关技术文档审核通过以上五个方面的全部要求,该蓝牙产品就会被BQE审核以及LIST在蓝牙产品网站上。
1055875333 综合技术交流

讲师简介

TI工程师

推荐内容

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版 版权声明

站点相关: 汽车电子 智能硬件

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved