机器学习 吴恩达

机器学习 吴恩达

机器学习MLmachine learning

此课程将广泛介绍机器学习、数据挖掘与统计模式识别的知识。主题包括:(i) 监督学习(参数/非参数算法、支持向量机、内核、神经网络)。(ii) 非监督学习(聚类、降维、推荐系统、深度学习)。(iii) 机器学习的优秀案例(偏差/方差理论;机器学习和人工智能的创新过程)课程将拮取案例研究与应用,学习如何将学习算法应用到智能机器人(观感,控制)、文字理解(网页搜索,防垃圾邮件)、计算机视觉、医学信息学、音频、数据挖掘及其他领域上。

共113课时19小时28分58秒

机器学习基石

机器学习基石

机器学习林轩田

介绍各领域中的机器学习使用者都应该知道的基础算法、理论及实用工具

共65课时15小时29分53秒

机器学习技法

机器学习技法

机器学习林轩田

线性支持向量机、对偶支持向量机、核型支持向量机、软式支持向量机、核逻辑回归、支持向量回归

共65课时16小时4分32秒

Python机器学习应用

Python机器学习应用

Python机器学习有监督学习无监督学习

(1)理解机器学习,通过介绍机器学习的基本问题(分类、聚类、回归、降维)介绍经典算法; (2)Python第三方库sklearn(scikit-learn),讲解应用机器学习算法快速解决实际问题的方法。

共27课时3小时17分52秒

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 汽车电子 智能硬件

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved