机器学习深入研究

机器学习深入研究

神经网络机器学习贝叶斯聚类

(01)机器学习与相关数学初步 (02)数理统计与参数估计 (03)矩阵分析与应用 (04)凸优化初步 (05)回归分析与工程应用 (06)特征工程 (07)工作流程与模型调优 (08)最大熵模型与EM算法 (09)推荐系统与应用 (10)聚类算法与应用 (11)决策树随机森林和adaboost (12)SVM (13)贝叶斯方法 (14)主题模型 (15)贝叶斯推理采样与变分 (16)人工神经网络 (17)卷积神经网络 (18)循环神经网络与LSTM (19)Caffe&Tensor Flow&MxNet 简介 (20)贝叶斯网络和HMM (额外补充)词嵌入word embedding

共21课时1天22小时12分36秒

人工智能 江西理工 罗会兰

人工智能 江西理工 罗会兰

人工智能搜索启发式函数模拟退火

主要内容:人工智能的定义,树搜索算法,无信息搜索策略,启发式搜索策略,约束满足问题求解,博弈算法,贝叶斯网络,隐马尔可夫模型,卡尔曼滤波器。 ​ 特色:人工智能课程在学校的讲授时间为32个学时,面对计算机科学与技术硕士研究生,是一门专业必修课。由于人工智能基础理论涉及到智能搜索,推理,机器学习等,是现在信息类研究生各研究方向的必备理论基础,能为学生深入各方向的研究打下良好的基础。其中的思想可以应用于模式识别,图像视频智能分析处理,数据挖掘及各种信息的智能处理应用中。由于课程讲授侧重于算法的描述,所以学生并不会觉得枯燥,在结合编程的实践练习下能很好掌握智能思想。

共40课时8小时47分20秒

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版 版权声明

站点相关: 汽车电子 智能硬件

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved