23" 数字微镜器件(DMD)的光学参考设计

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • 23" 数字微镜器件(DMD)的光学参考设计
  • 登录
本次演示将介绍一个 0.23 英寸 数字微镜器件 DMD 的光学参考设计, 并将重点介绍照明。 我们将从 DMD光学规格和 设计目标入手。 随后会展示照明设计布局, 该布局针对1 毫米 x 1 毫米的 LED 光源进行了优化。 您将能够看到光学组件、光线 如何穿过系统以及 整个光学器件的大小。 我们会评估两种常见 LED 尺寸的 几何效率。 1 毫米 x 1 毫米的LED 可实现高效率, 而 1.2 毫米 x 1.5 毫米的 LED 则可实现高亮度。 此参考设计中使用的 DMD是一个 960 x 540 的阵列, 像素间距为5.4 微米。 微镜倾斜角度为 17 度。 有源阵列总尺寸为5.184 毫米 x 2.916 毫米, 对角线尺寸为0.23 英寸。 在传动器的帮助下,同样的阵列尺寸 可实现更高的分辨率。 例如,使用四向传动器可以将分辨率放大四倍, 达到 1080p。 不同的客户需要的投影透镜大不相同, 因此本参考设计中将不会探讨投影透镜。 不过,我们需要指定一个光圈为 f/1.7 的 远心投影透镜,以匹配照明设计。 这一参考设计的目标是 实现紧凑、高效的照明。 另外,参考设计为客户的引擎设计 提供了一个起点。 客户可以根据此参考设计 在性能、成本、外形等方面 进行权衡。 在深入了解设计之前, 我们来看看DMD 的展度功能, 并了解什么尺寸的 LED比较合适。 DMD 展度由有源阵列大小 以及投影透镜可收集的锥角决定。 我们假设投影透镜的光圈为 f/1.7, 对应于正负 17 度锥角。 通过将尺寸与锥角正弦值相乘, 沿宽度和高度方向单独执行计算, 可以完美匹配发光锥角为正负 90 度的 朗伯发光LED 的大小。 请注意,这是一个侧面照明的 DMD, 照明方向与DMD 宽度方向 大约呈 34 度夹角。 因此,在宽度方向,我们需要为它 添加一个余弦系数。 这样,我们计算出的DMD 就能够 匹配 1.257 毫米 x 0.853 毫米的 朗伯发光LED。 我们选择了两个大小接近这一尺寸的 常用 LED,如 LED 尺寸为1 毫米 x 1 毫米, 可实现高效率,如 LED 尺寸为1.2 毫米 x 1.5 毫米, 则可实现高亮度,但效率 有所下降。 这张图片显示了照明设计的 光学布局。 光源是几个具有相同发光尺寸的 RGB LED。 使用两个透镜收集每个LED 发出的光并进行准直。 完成准直后,通过双色X 板将 RGB 颜色组合到 一个共同光路中。 X 板的后面是一个蝇眼透镜阵列, 此阵列会使光均质化,以便在 DMD 上 实现均匀照明。 X 板既能够实现高效率,也可以节省空间。 透镜阵列的后面是一个塑料盖棱镜, 棱镜的两侧具有曲面造型。 一个曲面是传输面, 另一个曲面是反射面。 再加上平坦表面、后方的楔形体 以及直角棱镜,它们的共同作用会在 DMD 上产生 均匀、清晰图像,用于照明。 直角棱镜会将 DMD 光 反射到投影透镜上, 以实现全内反射,即 TIR。 彩色反射棱镜、楔形体 与直角棱镜的组合构成了 一个内联配置。 此配置不但能够减小尺寸, 还可以将照明装置折叠到 投影透镜的另一侧,从而为超短焦透镜 这样的大尺寸投影透镜留出足够的空间。 当考虑提高分辨率时, 宽大的空间有助于更轻松地插入一个传动器。 这一页上的两个视图 显示照明的光学尺寸为39 毫米 x 24 毫米, 高为 9 毫米。 为了估计最终的引擎尺寸, 我们需要添加其他的必要机械组件 和电气组件。 同样,这一尺寸也经过了优化, 能够让 1 毫米 x 1 毫米的 LED 实现高效率。 您可以使用性能有所下降的 1.2 毫米 x 1.5 毫米LED。 这一页显示了使用1 毫米 x 1 毫米 LED 设计的估计结果。 几何效率是一个用来描述 穿过光学系统的光线在光线总量中 所占百分比的主要性能指标。 它并未考虑衍射损耗、 表面反射损耗、材料吸收损耗 等因素。 不过,对于几何效率, 客户可以将自己的传输数据与 DMD 效率相结合来估计引擎效率。 通过添加LED 光学输出, 我们可以估计引擎输出的总流明。 我们还需要允许在 DMD 上合理溢出, 以容纳由于各种误差而 产生的对齐错误。 在溢出损耗之后,我们可以看到 此设计在所有LED 中都实现了 大约 71% 的高几何效率。 我们是在所采用的理想 f/1.7 远心投影透镜的屏幕上得到这一效率的。 如果在同一个光学器件上使用 1.2 毫米 x 1.5 毫米的 LED,我们会发现效率 下降到大约 52%。 不过,由于 LED 发光面积几乎扩大了一倍, 亮度也几乎提高了一倍,因此 总亮度要比宽度为1 毫米 x 1 毫米的 LED 高很多。 综上所述,我们为 0.23 英寸、17 度倾斜的DMD 提供了一个光学 参考设计,目的是让1 毫米 x 1 毫米 LED 实现小尺寸和高效率。 假设使用光圈为 f/1.7 的远心投影透镜, 可实现高达71% 的几何效率。 我们还估计了1.2 毫米 x 1.5 毫米 LED 的效率,结果表明, 这个更大的 LED可实现更高的亮度。 同样,此参考设计将为客户的 引擎设计提供一个起点,设计人员可以 基于这个设计在性能、尺寸、 成本等方面进行权衡。
课程介绍 共计5课时,55分48秒

TI DLP® Labs - 显示

TI DLP 显示 Display DLP Labs

该培训教程介绍了DLP显示技术,包括产品选择、亮度要求、投影技术、散热等。此外,还详细介绍了DLP技术在显示方面的应用。高级别视频教程的内容包括产品选择、亮度要求、更深入地讲解有关投影技术、散热以及不同应用中的其他设计挑战等问题。 该系列教程旨在帮助您打造明亮、高效的汽车、显示和工业照明控制系统。我们会定期更新内容,请注意在此页面添加书签。

推荐帖子

请教TMS320VC5509A二次Boot问题,谢谢
本人自行编写的二次加载(Pageload)程序在CCS3.3开发环境下通过连接仿真器可以将FLASH中的用户程序搬移到DSP的RAM中并能保证其正确运行。但是,当我将二次加载(Pageload)程序烧写到FLASH中,想利用C5509A内部固化的bootloader先完成二次加载(Pageload)程序的加载,然后再完成用户程序的加载时出问题了,程序加载后只能执行一部分,另外DSP与FLASH是通...
969121641 DSP 与 ARM 处理器
win732位安装ccs3.3完成后打开没有烧写插件?哪位大神能帮我解决一下 非常感谢
win732位安装ccs3.3完成后打开没有烧写插件?哪位大神能帮我解决一下  非常感谢...
清荷塘 DSP 与 ARM 处理器
【我与TI的结缘】+TI运放助力电子大赛
上次和大家聊了一下【我与TI的结缘】的原因,就是因为MSP430单片机, 具体帖子在这里【我与TI的结缘】+MSP430系列单片机 今天在和大家聊聊我曾经用过的TI的一些运放吧,或者说是我前两年做电子大赛时用的TI运放做的一些题吧。                   &n...
High哥 TI技术论坛
【SensorTag】the seventh week:找到类似的芯片
本帖最后由 ddllxxrr 于 2014-2-14 14:08 编辑 我本想用手机做主控,但这几天看资料,发现IOS要开发费用地。 我想这有点不值吧,毕竟只是学习阶段对吧,我也不可能去换个安卓手机,那样太蠢。 于是我换过来,我想用SensorTag做服务端,我用一个蓝牙模块去读它。 没事在网上找真地找到了一款芯片,这个芯子就是nRF51822。 Nordic Semiconduc...
ddllxxrr 无线连接

推荐文章

生于毫末,成于万象——德州仪器推出全球超小尺寸MCU 2025年03月21日
“TI的MSPM0系列MCU战略是推出经济实用性的系列产品,以满足多样化的市场需求,并持续优化价格、尺寸和易用性。”德州仪器 MSP 微控制器产品线经理Yiding Luo表示。 嵌入式一直是TI的重点发展领域之一,围绕模拟产品中的电源和信号链,TI有一套完整的解决方案,同样嵌入式领域也是如此。TI提供了MCU、MPU、DSP等不同的产品线组合,全面涵盖汽车、工业以及消费...
德州仪器推出全球超小型 MCU,助力微型应用创新 2025年03月18日
德州仪器 (TI) 宣布推出全球超小型微控制器 (MCU)。对于医疗可穿戴器件和个人电子产品等紧凑型应用而言,这一成果堪称尺寸与性能维度上的重大突破。 新款 MCU 的尺寸较当前业内同类产品减小了 38%,帮助设计人员在保障性能的情况下优化布板空间。 新款 MCU 进一步扩展了德州仪器的 MSPM0 MCU 产品组合,不仅可以增强嵌入式系统的传感和控制能力,同时还能减少...
告别车辆外部入侵焦虑,德州仪器雷达设计助您一臂之力 2025年03月11日
随着机动车辆盗窃案件持续增加(根据刑事司法委员会的数据,2022 年至 2023 年的增幅达 105%),许多消费者正在寻求新的设计方案以确保车辆安全。车辆集成的视频行车记录仪作为一项新功能,有助于满足这一需求。尽管行车记录仪历来被用于记录道路事故,但越来越多的售后市场和集成行车记录仪系统开始提供一种新的保护形式:外部入侵监控。 图 1:外部入侵监控系统示例...
使用德州仪器D类放大器优化汽车音响系统设计 2025年03月04日
先进的数字处理技术和模拟半导体正在帮助音频设计人员以创新的方式提供身临其境的音频体验,以满足消费者对增强的音频技术(用于便携式扬声器、笔记本电脑、条形音箱和汽车音响系统等)的需求。 当今的汽车音响系统比早期单扬声器汽车收音机中使用的真空管供电放大器要复杂得多。有些新型汽车在整辆车中有二十多个甚至更多的扬声器。从早期的系统发展到如今的沉浸式高品质音响系统,关键在于能否为车辆...

大明58

DLP显示技术,包括产品选择、亮度要求、投影技术、散热等。

2020年07月20日 09:56:14

nemon

成本还是高,对精度的要求也影响普及

2020年03月01日 17:24:41

54chenjq

数字微镜器件(DMD)的光学参考设计

2020年02月11日 15:54:38

hellokt43

TI DLP? Labs - Display

2019年12月11日 10:38:03

分享到X
微博
QQ
QQ空间
微信

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved