- 本课程为精品课,您可以登录eeworld继续观看:
- MSP430FR6047超声波感应模拟前端
- 登录
- 课程目录
- 相关资源
- 课程笔记
下面就是我们的物理结构
我们讲一下我们这个USS
超声波的IP在我们的430芯片中
这个IP的一个结构
我们可以看到
在这里的两个就是我们的超声波的换能器
那么整体的最右边呢
都是我们的430芯片
大家可以看到我们有一个高度集中化的一个430的
水表测量方案
我们在外面连接我们的换能器以及
然后这个RC
就可以实现我们这个
流量计的一个设计
那么我们绝大部分的
由于我们是一个高度集中化的嘛
高度集中化的一个方案 所以
我们在内部集成了很多
流量集中所需要的一些模块
比如说我们的PPG
在这里
这就是我们的超声波发生的一个
generator
就是超声波发生器的一个结构
那么它可以产生从33K赫兹到
2.5M赫兹的一个超声波频率
并且我们可以通过软件配置
去设置我们想要的一个超声波频率
并且它可以比如说产生
大概127个超声波脉冲
然后你也可以设计一个反向的超声波脉冲去
抵消液体中超声波传给的
流量 那么
这些都是可以通过软件去配置
其次就是我们的PHY
这个PHY就是一个驱动
就是驱动我们超声波换能器的一个
功率的一个IP
我们一般驱动的transducers的内阻大概
是在4欧姆左右
在工作时 它的功耗大概是在
120毫安左右
那么我们可以通过这个PHY来驱动
两个
一对这样的transducer
超声波换能器
那么我们的超声波换能器的工作电压范围大概
是在2.2伏到3.6伏左右
那么我们为什么会用这么低的电压去驱动
超声波换能器呢 一个是由于
我们采用了(听不清)
导致我们最终的几率比较高 不需要用
比较高的电压 所以我们
我们不需要高电压来驱动我们的换能器从而保证
我们的功耗
也就是换能器整体的功耗 流量计的功耗
降低都是通过
内部的一些算法啊 结构啊来去
保持我们这个功耗的
那么其次就是我们的这个
PGA 可以看到在这里
我们的PGA主要就是
将超声波信号发射出去
然后从另一端接收
将接收到的信号集成一个
一个放大的处理
那么可以看到我们一般接收到的信号
那么在大于2.5伏的时候
一般接收到的信号一般是30
35个毫伏到1500个毫伏左右
那么我们再通过这个
这个PGA来去
放大这个信号 然后来得到一个
比较清晰的一个
来得到一个更准确的一个
时间传输的一个值
那么可以看到我们的这个
可编程的这个放大器的这个
一个放大倍数在6DB到19DB之间
那么它是以1DB为一个STEP
为调解的一个最小单位来进行调解的
那其次 我们的PGA也是
也是根据我们的时间 来去
自动地去调解
因为我们的最终目标设置是我们传输到
高速的ADC采样的一个
浮磁的标准的
比如说我这个要求的
传输到我们高速ADC的幅值大概是
2伏左右 那么
PGA会自动的根据
根据我输入进来的这个信号
来自动放大我配置的系数
在输入到我们的高速ADC的信号
维持在两伏左右的一个范围
这些都是一个自动配置的一个过程 不需要
认为地去操作
这个带来的有点就是 如果
我的transducer上被一些
生了一些水垢
导致我最终采样到的超声波
信号是受到了一些损失
超声波信号的幅值可能更弱了一些
那么可以通过PGA来弥补整个超声波
来弥补水垢对超声波传输的
一个影响
那么其次就是HS的PLL
也是我们的时钟发射信号
使用发生在这边
那么高速的这个
PLL最高能产生到
80兆每赫兹的一个时钟
这个时钟也可以直接提供给我们的
高速的signal ADC
来去维持一个高频的采样
那么我们尤其要说的就是这个
我们的SDHS
sigma high speed的一个高速ADC
那么它是一个12比特的
然后是8兆SDHS的
8兆signals per second
8兆SDHS的采样ADC
这个声噪比是63DB
也是在整个的平常范围内是
1.5M赫兹里面
我们的声噪比是63db
声噪比份
噪音很低
那么(听不清)的
比较(听不清)的一点就是
我们的OSR
比如说在(听不清)中
(听不清)
(听不清) 就是(听不清)
更加能够去综合一些
信号的(听不清)一些处理来
保持我们高精度的一个功能
那么同时我们这个
集成在芯片内部的这个
高速ADC能够工作在
stand alone模式 也就是如果你
能够对我们整个USS系统不是
感兴趣 只是对我们的
高速ADC stand alone应用
比较有兴趣 你也可以去支持
就是不带其他的这些外设
来单独使用这个高速ADC的
好的 我们的硬件的一些功能模式大概
就是这样 那么
这是我们信号传输的这个
要求
下一页主要讲的是我们的control panel
也就是我们的时钟控制信号去
怎么样控制以及完善
以及最终
计算得到我们的超声波的上下性时间的
那么首先就是我们这个
这个功率控制就是
这个电池控制的这么一个
一个系列
它是主要控制我们的这个
比如我们上一页所讲的
power generator
就是PPG
就是产生超声波倒换信号的
那个PPG 然后对它
去供电
同时给我们的发起供电去驱动我们的
超声波换能器来
产生超声波的
那么其次就是
就是这个时钟的控制
时钟的一个持续信号
也就是什么时候去开启什么样的一个功能模块
那么都是通过它来操作控制的
这期的
这期的演示但是
我们只讲了一些 右边最后的
框图来详细了解一些 在这里
由于这些是持续的一些控制
我们不再多说了
课程介绍
共计9课时,1小时53分44秒
猜你喜欢
换一换
推荐帖子
- 版块导航
- 个人对论坛的感觉很东西太多太杂,就不知道怎么下手来,一时间就盲目了,很多时候就是多多益善呗,最后什么都没有学习透彻,因为太多的重复~。所以想到要是有个论坛导航的就好了!就说说我这个版块吧! 如果你仅仅飘过,或者初学者的话建议你到这个里面看看就好的,可以看到dsp的应用,好有个感性的认识~ 初学者也可以下下课件学习一下~ https://bbs.eeworld.com.cn/thread-771...
- gaoxiao 微控制器 MCU
- 我的一个台式机出问题了,寻求帮助
- 昨天晚上把台式机给弄趴下了. 情况是这样的:机器正在运行,我突然用手按了一下cpu的风扇.结果就黑屏了.重新启动就只听见叫声了,根本就没有自检了. 不知道是什么地方坏了,难道主板给烧了啊:L...
- shicong DSP 与 ARM 处理器
- TMS320F28335程序运行不正常
- 我们设计的系统是由5V电源转换出3.3V,再由3.3V转换出1.9V,系统断电后重新上电,有时候会出现系统主频被拉低的情况,采用的是内部振荡器接30M晶振,正常工作频率为150Mhz。 例如写一个不带中断的闪灯程序,LED灯一秒闪一次,Release模式下,有的时候上电可以正常工作,LED一秒闪一次,此时系统的3.3V、1.9V电压正常,晶振频率正常,5V电源不太正常,为4.2V到4.5V(每次...
- ZCW 微控制器 MCU
- CC2640R2F蓝牙调试——更改设备名称
- 调试CC2640R2F,以TI官方simple_peripheral例程为基础,更改手机端搜索到的蓝牙名称。 1、安卓和IOS搜索蓝牙名称有何区别? 配置CC2640R2F时,有两个地方配置了蓝牙名,分别是attDeviceName[]和scanRspData[],其中scanRspData[]除了包含local_name外,还有发射功率和时间间隔信息。 安卓设备: 搜索显示的...
- Jacktang 无线连接