1 误差分析背后的统计学知识

+荐课 提问/讨论 评论 收藏
  • 视频加载中。。。
大家好,欢迎来到TI ADC高精度实验室 讨论误差分析背后的统计学知识 在这里,我们将会特别学习 ADC数据手册里 各项规格指标的典型值与最大值 在统计学上的含义 此外,我们还会考虑 对于典型数值的最坏情况分析和统计分析之间的区别 为了更好的理解计算一个系统中总偏移误差的概念 我们从一个基本的误差分析开始 幻灯片上展示的,是用于这次误差分析的势力电路 这是一个高边电流采样监测电路 用于监测50MA—20A之间的电流 我们看看,在考虑所有信号链物件时 ADC上所看到的总偏移误差 电流感应放大器U1增益是20倍 所以输出偏移误差会放大20倍 缓冲器U2,增益是1 所以U1输出的偏移误差会直接叠加到U2和ADCU3的偏移误差上 一个通常的做法,是每个器件的最大偏移误差直接相加 来得到最坏情况的偏移误差 然而,这种计算方式 是假设所有三个物件同时存在最坏情况下的偏移误差 那所有最坏情况同时出现的概率有多大呢 我们将在下面几页幻灯片上讨论 这也幻灯片,展示了 ADC数据手册里面各项规格指标的典型值 与最大值背后的统计学背景 对于一个均值为0的指标 典型值,就是在高斯分布的均值上 叠加正负一个标准差之后的绝对值 一般来说,误差取得的均值都接近0 所以,为了方便讨论 这里我们假设器件的均值为0 在这个例子中,ADS8860的典型偏移误差是正负一个毫伏 对应正负一个标准差 最大偏移误差是一个测试参数 所有超过这个最大期间的器件都会被丢弃 而不会出货给客户 因此,这个分布曲线,其实是一个截断的高斯分布 因为没有高于最大值,和低于最小值的分布数据 通常,最大值设置为正负三个标准差 在这个例子中,你可以看到 ADS8860的最大值被设置为正负四个标准差 那这样的话,68.2%的器件都会落在这个典型值的范围内 从统计学角度看 我们找到一个有最大偏移误差的器件概率有多大 对于这个例子 就是我们要找到一个偏移误差为正负四毫伏的ADS8860的可能性有多大 因为概率等于概率分布曲线的下面的面积 在单独一个点下面积为0 也就是概率为0 这意义不大 所以,我们考虑在最大误差值附近的概率 在这个例子中误差在2MV和4MV之间的概率是2.272% 所以,在数据手册直方图上 你看不到正负三个毫伏和正负四个毫伏上有分布 这也是合理的 下面,我们会使用统计信息 找到我们势力电电路中所有三个器件 在最坏情况附近的偏移误差的符合概率 这里,我们展示了三个器件 基于数据手册的偏移误差的高斯分布 三个器件都在最坏情况的概率是多少呢 你可以看见,每个器件在两个标准差以上 也就是最坏情况附近的误差概率 大概是2% 因为三个分布是随机并且不相关的 所以,三个最坏情况,并且同时发生的符合概率 是三个概率的乘积 通过计算,你可以看到 所有器件都在最坏情况附近的概率为0.0011% 你可以想象 随着系统中的器件数量增加 所有器件都在最坏情况的概率非常小 所以,直接把每个器件的最坏情况进行叠加 并不是理解系统总误差的最好方法 下面,我们会看一个可以在统计上更好理解误差的方法 这里,我们展示了信号链中 所有三个器件的偏移误差的概率分布 我们会叠加三个分布 而不是三个最大值 不相关的高斯分布标准差 可以通过计算均方根的方式进行叠加 正如我们前面所提到 在这个例子里 所有的误差分布都是参照ADC的输入端 所以,U1的偏移误差要乘以增益20 经过公式的计算 偏移误差分布标准差典型值的叠加结果是±1.887MV 最终系统,总偏移误差分布的标准差 是±1.887MV 也就是说,系统偏移误差的典型值是1.887MV 但是,系统的最大偏移误差是多少呢 最大值,可以根据系统指标风险容忍度来设定 这个表格,展示了不同标准差的数量 对应极限内的样本百分比 例如,如果系统的最大指标设定为正负三个标准差 那么,99.73%的器件就会在极限值以内 0.27%的器件就会落到极限值以外 这取决于系统要求 我们可以设置一个更为保守的极限值 我们必须意识到 对于绝大部分指标,例如偏移误差来说 还会有其他影响总误差的因素 小心不要把统计极限值调整到最坏情况极限值以外 另外,请记住 器件的实际分布是一个截断的高斯分布 所以叠加分布也会在我们前面计算的最坏情况下截断 感谢观看本视频,请尝试完成小测验,以巩固你对本视频内容的理解
课程介绍 共计5课时,55分0秒

[高精度实验室] ADC系列 3&4 : 误差与噪声

ADC 噪声 高精度实验室 误差 SPICE 蒙特卡罗 TIPL

本章节介绍了误差分析背后的统计学知识。它涵盖数据手册规格指标里的典型值和最大值统计学含义,以及如何使用它们来进行最坏情况分析和统计分析。我们讨论了如何通过校准来计算和消除增益和偏移误差,以及介绍了数据转换器系统的偏移和增益误差计算示例。同时我们还介绍了如何使用称为蒙特卡洛分析的SPICE分析选项来确定统计有效的增益误差估算值。它涵盖了使用TINA SPICE进行蒙特卡罗分析的分步方法,并解释如何理解结果。本视频介绍如何使用数据手册规格指标以及SPICE仿真,来计算包括ADC、放大器和参考的整个系统的噪声。这个动手实验展示了ADC前端的运放电路如何受到电阻器热噪声的影响。

推荐帖子

【晒样片】+两个小伙伴:用于低功耗可穿戴应用的符合 Qi 标准的无线充电器解决方案
本帖最后由 fyaocn 于 2015-1-26 15:55 编辑 1、用于低功耗可穿戴应用的符合 Qi (WPC) 标准的无线充电器是用于设计适合低功耗可穿戴设备。其中包括符合 Qi 标准的无线接收器bq25003  和超低电流单节锂离子线性电池充电器 (bq25100)。这次申请的样品就包括了这两种芯片,25003是无线接收器,通过环形线圈的互感效应,接受电磁耦合能量;...
fyaocn TI技术论坛
DSP与普通MCU的区别
考虑一个数字信号处理的实例,比如有限冲击响应滤波器(FIR)。用数学语言来说,FIR滤波器是做一系列的点积。取一个输入量和一个序数向量,在系数和输入样本的滑动窗口间作乘法,然后将所有的乘积加起来,形成一个输出样本。   类似的运算在数字信号处理过程中大量地重复发生,使得为此设计的器件必须提供专门的支持,促成了了DSP器件与通用处理器(GPP)的分流:   1 对密集的乘法运算的支持   G...
黑衣人 DSP 与 ARM 处理器
锂电池充电的原理解析
       锂离子电池的充电过程可以分为四个阶段:涓流充电(低压预充)、恒流充电、恒压充电以及充电终止。        锂电池充电器的基本要求是特定的充电电流和充电电压,从而保证电池安全充电。增加其它充电辅助功能是为了改善电池寿命,简化充电器的操作,其中包括给过放电的电池使用涓流充电、电池电压检测、输入电流限制、充...
qwqwqw2088 模拟与混合信号
MSP430x13x, MSP430F14x, MSP430F15x, MSP430F16x 示例代码
附件中是 TI发布的MSP430x13x, MSP430F14x, MSP430F15x, MSP430F16x 示例代码,代码为目前TI更新的最新代码,为了方便下载,我会开贴将各个系列的代码相继整合出来。...
wstt 微控制器 MCU
分享到X
微博
QQ
QQ空间
微信

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved