输入失调电压与输入偏置电流 - 实验

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • 输入失调电压与输入偏置电流 - 实验
  • 登录
大家好 欢迎来到 TI Precision Labs 德州仪器高精度实验室 在本次课程是针对运放 Input Offset Voltage Vos 输入失调电压 和 Input Bias Current IB 输入偏置电流的实验课程 本次实验课程将讲述计算 SPICE 仿真和实际测量 可以有效地巩固运放输入失调电压 与输入偏置电流的基本概念 本次实验课程的详细计算部分 可以通过手工运算完成 使用 MathCAD 或者 Excel 等等工具 可以大大的帮助提高效率 因为德州仪器提供了在本实验课程中 使用到的运放的通用 SPICE 模型 所以仿真练习 可以在任何的 SPICE 仿真工具中进行 然而最方便的是在 TINA-TI 中完成仿真 TINA-TI 是一个 可以在 TI 官方网站免费下载的软件 我们在这份 PPT 中也给出了 TINA 的仿真原理图 最后会在 TI 提供的印刷电路板 PCB 上 进行实际的测量 如果您能使用标准的实验室设备 您可以使用任何示波器和正负 12 伏的电源 进行必要的测量 然而我们强烈推荐使用 National Instruments VirtualBench 工具 VirtualBench 是一个多合一的 测试设备解决方案 它可以通过 USB 或者 wifi 连接电脑 并提供供电电源轨 模拟信号发生器 和示波器通道 此外还提供一个五位半的万用表 以方便进行高精度的测量 在本次实验课程中 就是使用这套虚拟仪器来进行测量的 在实验一中我们会确定 Vos 和 IB 在一个输入阻抗 RIN 等于 0 欧姆的 电路里所产生的影响 首先根据 Vos 和 IB 课程所学 计算图中所示电路 由于 Vos 和 IB 影响的预期总输出电压 注意表中的跳线位置 JMP13 和 JMP 14 是断开的 JMP15 是闭合的 JMP15 将 U5 的反相输入端短路到地 使 RIN 等于 0 欧姆 这里我们要计算两次输出电压 第一次计算是采用 OPA211 为 U5 和 U6 的运放 第二次则是采用 OPA188来计算 这些运放的不同参数会带来不同的结果 为了进行计算 您需要知道每一个运放的 Vos 和 IB 的典型值和最大值 这些值在这里给出了 在下方的表格中填入您的答案 我们在此处提供了答案 以方便您检查您的计算结果 需要注意的很重要的一点是 Vos 和 IB 可能是正的或者是负的 这意味着必须考虑所有由于 Vos 和 IB的 不同可能性而导致的可能的输出电压 首先计算 Req 等效输入阻抗 然后将 Req 乘以 IB 来确定 由 IB 所产生的输入电压 然后使用公式 Vout 等于 G1 第一级的增益 乘以 G2 第二级的增益乘以 (Vos+Vib) 来计算总输出 再一次指出这里有四种可能性 我们选出最大的值 使用参数的最大值代替典型值 然后重复相同的步骤 在下方的曲线中 展示了可能输出值的高斯分布 重复相同的步骤来计算 OPA188 根据 OPA188 的不同指标 可以得出在典型值和最大值情况下的 不同输出电压结果 下一步是运行 SPICE 仿真来分析 求得总 DC 输出电压 TINA-TI 的仿真原理图已经嵌入在文稿中 简单的双击图标即可打开 保证跳线设置的正确 在 OPA211 电路上 JMP13 和 JMP14 是断开的 JMP15 是闭合的 在 OPA188 电路中 JMP9 和 JMP10 是断开的 JMP11 是闭合的 仿真输出电压点击分析 Analysis 转到直流分析 DC Analysis 计算节点电压 Calculate nodal Voltages 对于 OPA211 您应该得到一个大约为 133.28mV 的结果 对于 OPA188 您应该得到一个大约 为 -10.73mV 的结果 确保在设置测试 pcb 之前关闭 DC 电源 在 VirtualBench 软件中点击 DC Power Supply 区域的电源按钮 以关闭电源 检查 VirtualBench单元的前面板 确保 led 是熄灭的 也要确保信号发生器是关闭的 在测试板上选择电路三和电路四 安装跳线帽和器件 在电路三中安装 JMP9 JMP11 和 JMP12 同时安装 OPA188 到 U3 和 U4 的插座上 在电路四中安装 JMP13 JMP15 和 JMP16 同时安装 OPA211 到 U5 和 U6 的插座上 本页展示了 TI 高精度实验室 电路三的完整原理图 您将使用这个电路来测量 Vos 和 IB 在 OPA188 上的效果 本页图片展示了 TI 高精度实验室电路四的完整原理图 您将使用这个电路来测量 Vos 和 IB 在 OPA211 上的效果 为了测试板的正常工作 您只能在电路三和电路四上安装跳线帽和器件 这个非常重要 在 PCB 的其他电路上不要安装任何的跳线帽和器件 将不相关电路上面的跳线帽和器件都去掉 并把它们放在测试板下方的存储区域 本张图片给出了 TI 高精度实验室测试板 和国半 VirtualBench 之间的连线图 将提供的电源线连接到 VirtualBench 的 DC 电源 和测试板上的电源连接头 J4 使用 BNC 线缆 连接测试板上的 Vout1 到 VirtualBench 示波器的通道 1 并且连接测试板上的 Vout2 到 VirtualBench 示波器的通道 2 然后给 VirtualBench 上电 使用 USB 电缆 把它连接到您的电脑 硬件会被检测为虚拟的 CD 驱动盘 您可以直接在驱动器上运行 VirtualBench 的软件 一旦软件打开 按照以下方式设置软件 设置时间刻度到一百毫秒每格 采集模式设置为自动 在示波器上打开通道 1 和通道 2 把它们设置为一被放大 直流耦合模式 按需要从 10mV 每格到 1V 每格之间 调整垂直刻度 将正 25 伏电源设置为正 12 伏 0.5 安培 将负 25 伏电源设置为负 12 伏 0.5 安培 按下电源按钮 打开供电电源轨 打开两个通道的平均测量 从而读到每个电路的输出电压 您必须同时设置 VirtualBench 示波器的模式 点击前面板所示的按钮 然后将采集设置为采样 Sample 将余晖设置为关闭 测量得到的预期输出电压在这里展示 OPA211 的测量输出电压为 74.7 毫伏 OPA188 的测量输出电压为 4.6 毫伏 在您的实验里您可能会有不同的结果 将测量与仿真结果对比手算结果会怎么样呢 请花点时间看看之前的结果 并与之相比较 实验课程的第二部分 我们会重复实验一相同的步骤 但这次输入电阻为 5k 欧姆 实验中我们会看到输入偏置电流 IB 对输出电压的影响 如原理图所示 原来将 U5 同相输入和地短接的跳线帽 JMP15 现在被移走了 现在安装上跳线帽 JMP14 是 U5 的同相输入端连接到一个 5k 欧姆的电阻 U5 的 IB 就会流过这个电阻 根据欧姆定律产生一个直流电压 增加失调电压的总量 和之前一样 使用 OPA211 和 OPA188 计算这个电路上由于 Vos 和 IB 产生的总输出电压 这里再给出两个器件手册上的参数以供参考 在下面的表格中输入您的计算结果 为了方便您检查计算的结果 我们也已经在这里给出了答案 由于 5k 欧姆的输入电阻 RIN IB 产生的电压会受到 RIN 的影响 计算过程会稍微改变 我们使用新的公式 Vib=ibReq+ibRin 其他的计算步骤和实验一一样 我们重复这个计算过程以求得最大值 对于 OPA188 分别使用典型值和最大值 重复两套计算和之前一样 OPA188 不同的电气特性 会产生不同的输出电压计算结果 重新运行 DC 节点电压分析仿真 确保使用合适的跳线设置 在 OPA211 电路上 JMP13 和 JMP15 断开 JMP14闭合 在 OPA188 电路中 JMP9 和 JMP11 断开 JMP10闭合 在重新运行 VirtualBench 的测量之前 测试板上的跳线设置必须修改 去除跳线帽 JMP11 和 JMP15 安装跳线帽 JMP10 和 JMP14 所有其它的跳线帽和器件之前的实验保持一致 在实验二中 OPA188 测量的输出电压为 3.49mV OPA211 测量的输出电压为 375mV 在您的实验中您可能得到不同的结果 将测量与仿真结果对比手算的结果会怎么样呢 在这个实验里 OPA211 的输出 比手算和仿真的典型值都要大 但比计算的最大值要小 OPA188 的输出小于手算和仿真的典型值 现在让我们比较两次实验的结果 输入阻抗的变化是怎样影响输出电压测量的呢 在 OPA211 中 增加输入阻抗会导致输出电压的急剧增加 然而在 OPA188 中则看不到大幅度的增加 这是因为 OPA211 比 OPA188 有更大的输入偏置电流 IB 本次实验环节到此为止 非常感谢您的观看
课程介绍 共计2课时,30分59秒

[高精度实验室] 运算放大器 : 2 输入失调电压与输入偏置电流

Precision Labs 运算放大器 信号链 输入失调电压 输入偏置电流 高精度实验室 TIPL

对于导致直流运算放大器输入误差的主要原因,您了解多少?

  * 了解室温下的输入电压偏移和输入偏置电流规格非常容易。但是,如果将温度考虑进来,会怎样?您如何正确解释这些参数在数据表图中的统计学分布并将其运用于您的总体误差分析?学完此课程,您将深入了解导致直流运算放大器输入误差的两大因素:输入电压偏移 (Vos) 和输入偏置电流 (Ib)。除了规格,我们还将展开更深入的探讨,了解不同的输入级拓扑和硅工艺技术如何影响 Vos 与 Ib。

  * 该视频系列讲述运算放大器输入电压偏移和输入偏置电流理论,并将该理论运用于动手实验,其中包括使用真实电路和测试设备进行的 TINA-TI 电路仿真和实验。

展开

推荐帖子

静噪调谐音频切换/混合电路图
切换或者混合两种及两种以上的音频信号不会产生烦人的滴答声,这种声音主要是由场效应管和一个低输入电阻运算放大器电路连接所引起的。 ...
fish001 模拟与混合信号
【玩转C2000 Launchpad】NOKIA 5110液晶显示
花了一个早上写了一个NOKIA5110液晶显示程序! 祝大家元旦快乐! 附上工程: /*-------------------------------------------- LCD_write_byte: 使用SPI接口写数据到LCD 输入参数:dt:写入的数据; command :写数据/命令选择; -------------------------------------------...
IC爬虫 微控制器 MCU
msp430f5529脉宽测量
用5529进行脉宽测量,中断貌似进了但是没法判断,求解读~ #include   #include "Header_Config.h" #include "sys.h" unsigned char overflow = 0,Sum_High_Index = 0,Sum_Rising_Index = 0,CCR_Flag = 0; long Wide_Rising_Ol...
shenlen 微控制器 MCU
DSP流水灯源程序
本帖最后由 Jacktang 于 2019-11-7 22:01 编辑 DSP流水灯源程序 /* * main.c * *  Created on: 2019-9-2 *      Author: CZQ */     /* * GPxDAT  &nbsp...
Jacktang 微控制器 MCU
分享到X
微博
QQ
QQ空间
微信

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved