噪声 6

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • 噪声 6
  • 登录
大家好 欢迎来到 TI Precision Labs 德州仪器高精度实验室 本次课程是讨论运算放大器的 固有噪声的第六部分 在之前的课程中我们讲解了 使用 SPICE 来进行噪声分析的基本知识 在视频中我们提到 确保噪声模型是否准确是很重要的 并且还建议要在网表文件中 检查噪声分析是否被包括在模型中 在本次的课程中 我们将会介绍一种用于验证噪声模型 是否准确的更全面的方法 此外我们也会介绍 如果没有一个准确的模型 我们该如何创建自己的模型 这个是用于确认放大器的噪声模型的 标准测试电路 放大器配置为一个电压跟随器 输入电压噪声经过缓冲电路输出 以便可以用输出探头为 Vn 来测量 电流表与同相输入端串联 以测量放大器的电流噪声 以测量放大器的电流噪声 要开始噪声分析 在菜单栏单击分析 然后单击噪声分析 选择噪声分析 并输入与放大器数据手册中的范围 相匹配的开始和结束的频率 注意要勾选输出噪声 以生成噪声频谱密度曲线 这张图片显示了噪声仿真的结果 确保您从多个点来比较数据表的电压 和电流噪声曲线与仿真的结果 一般来说 新的德州仪器放大器模型 能精确地建模噪音 因此仿真结果应该匹配数据表的曲线 然而一些老款或者停产的设备 可能没有正确的噪声模型 如果没有噪声模型或者模型不存在 我们该怎么办呢 答案是我们可以建立自己的模型 本次课程的其余部分 将一步步地介绍创建噪声模型的过程 这张图片以 没有准确的噪声模型的 OPA627 为例 幸运的是这个模型已经被更新 现在在 TI 官网上的最新版本 已经可以正确的模拟其噪声的性能 不过旧版本还是被放在这里 作为介绍噪声模型不正确的一个例子 在这个例子中 如果您对比仿真的电压噪声频谱密度 与数据手册的图 您会发现 1/f 噪声并没有被建模 此外仿真的电流噪声应该是 1.6fA/√Hz 这也是错误的 如果我们没有一个很好的 噪声模型的情况下 我们该怎么办呢 德州仪器提供了 TINA SPICE 模型 您可以自定义模型 从而获得准确的噪声性能 这个模型包括一个噪声电压源 一个噪声电流源 以及一个通用的运算放大器 1/f 和宽带噪声的型号 可以根据数据手册的数据来进行调整 此外运算放大器的开环增益和带宽 也可以调整 在这个图片中内嵌的这个 TINA SPICE 电路就包含了噪声源 和通用的运算放大器 现在让我们来看看 如何编辑噪声源 和运算放大器来匹配数据手册 首先让我们编辑电压噪声源 右键点击它 然后选择输入宏 这将打开一个网表查看器 右侧的屏幕截图是噪声电压源的网表 首先让我们输入 1/f 噪声 1/f 噪声是由两个值来控制的 噪声谱密度 单位为 nV/√Hz 以及对应的测量频率 在这个例子中 噪声是 50nV/√Hz 所以参数 NLF 输入50 这个噪声值的测量频率为 1Hz 所以频率 FLW 设置为 1 当选择 1/f 噪声电压的时候 确保该点选定在曲线的最低频率上 这将确保在噪声模型中的 1/f 分量是主要的 宽带噪声不会影响这个值太多 这将为您的仿真给出最准确的结果 宽带区域只需要在模型中输入一个参数 电压噪声频谱密度 单位为 nV/√Hz 对应在宽带区域下的参数 NVR 处输入 在本实例中 宽带噪声是 5nV/√Hz 所以 NVR 设置为 5 注意频率并不需要输入 因为宽带噪声密度 随着频率的变化保持不变 设置电压噪声源的最后一步 是点击编译复选框 如果更新的网表没有错误 您就会在窗口的底部看到消息 成功编译 一旦宏被编译点击文件 然后关闭网表浏览器 然后关闭网表浏览器 返回原理图编辑器 按照相同的过程设置电流噪声源 在这个例子中 电流噪声源没有 1/f 区 因此设置 1/f 噪声与宽带噪声值一样 但输入的 1/f 的频率 是非常低的频率值如 0.001 最后一个要求是修改一些通用的 运算放大器模型的参数 首先找到开环增益或 AOL 按数据手册值中的分配值 给出等效的十进制值 在本例中 120dB 转换为 1E6 接下来找到运算放大器的 增益带宽参数或 GBW 用 GBW 除以 AOL 来计算主极点 在这个例子中 GBW 为 16MHz 除以十的六次方得到 16Hz 的主极点 这个结果将被直接输入到模型中 双击运算放大器原理图的符号 打开属性窗口 单击 Type 字段中的按钮 进入运算放大器的规格表 在这里输入开环增益和主极点 此时运算放大器和噪声源 包含了噪声仿真所有需要的信息 让我们最后做一个仿真 确认我们没有犯任何错误 使用在这个视频开始的时候 引入的噪声测试电路重新运行噪声仿真 经过我们的调整 现在的模型完全匹配数据表上的曲线 这款运算放大器 现在可以用在任何应用电路上仿真噪声 当您按照这样的方法 建立一些噪声模型后 您会发现它是一个比较简单的过程 在某些情况下 即使准确的模型已经存在 您仍然可以选择创立自己的噪声模型 其原因是自定义的噪声模型 可以灵活地调整或者消除噪声源 这使您能够尝试并确定电路的 噪声的主要来源 以上就是本次课程的内容 谢谢您的观看 请准备好下面的一个小测试 看看您是否已经掌握了本次的内容
课程介绍 共计9课时,2小时16分22秒

[高精度实验室] 运算放大器 : 8 噪声

Precision Labs 信号链 噪声 高精度实验室 TIPL

您是否知道摆在您桌面上看似什么动静都没有的标准电阻器组件实际在产生噪声?

了解真实电路中的噪声对于实现您的总体系统噪声性能目标至关重要,但噪声计算非常复杂,往往需要漫长的手工计算。学习本系列并完成相关的练习之后,您将成为运算放大器噪声领域的专家!您将能够通过可显著降低噪声计算复杂性的五个“经验法则”快速计算出电路的噪声。我们还将向您展示如何仿真您的电路来验证您的手工计算。如果运算放大器没有噪声模型,该怎么办?不必担心 - 我们将向您展示如何轻松创建您自己的模型!最后,我们将展示噪声测试技巧并进行实际的噪声测量。

该视频系列讲述运算放大器噪声理论,并将该理论运用于动手实验,其中包括使用真实电路和测试设备进行的 TINA-TI 电路仿真和实验。

展开

推荐帖子

关于低功耗蓝牙的连接参数更新
       首先要明确:连接参数是由主机端确定的,从机端可以发起更新连接参数的请求。主机端可以直接下发连接参数,而从机端则只能是发起更新请求并附带想要的连接参数范围。 在初始化中将想要的连接参数设置进osal( 在和IOS设备连接时需要注意一些规则,在前面有提到 ): GAPRole_SetParameter( GAPROLE_PARAM_UP...
Jacktang 无线连接
利用DLP® Pico™技术打造卓越的智能显示体验
随着消费者不断采用物联网(IoT)解决方案将家庭内设备连接到外部和内部网络,智能音箱将在越来越多的家庭中普遍应用。事实上,智能音箱市场可能会继续保持高增长态势;据Juniper Research预测,到2022年,Amazon Echo、Google Home、Apple HomePod和Sonos One等设备将在大多数美国家庭中普及。 常规智能音箱采用音频进行反馈,但新一代称为智能显示的...
alan000345 TI技术论坛
几种主流嵌入式架构的代码压缩技术
     对于嵌入式软件而言,代码尺寸是越小越好。压缩代码以适应受到成本或空间限制的存储子系统已经成为嵌入式系统开发的一项重要事务。ARM、MIPS、IBM以及ARC都提供了降低存储器占用的技术,本文将对这几种架构中代码压缩技术的实现进行比较分析。   如今,存储子系统的成本高于微处理器已不再稀奇。因此,选择一款能节约存储成本的处理器就变得很有意义。编写紧凑的代码只...
Aguilera 微控制器 MCU
如何选择DSP的电源芯片?
推荐几个TI的芯片 TMS320LF24xx:TPS7333QD,5V变3.3V,最大500mA。 TMS320VC33: TPS73HD318PWP,5V变3.3V和1.8V,最大750mA。 TMS320VC54xx:TPS73HD318PWP,5V变3.3V和1.8V,最大750mA; TPS73HD301PWP,5V变3.3V和可调,最大750mA。 TMS320V...
fish001 DSP 与 ARM 处理器
分享到X
微博
QQ
QQ空间
微信

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved