电气过应力 (EOS) 2

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • 电气过应力 (EOS) 2
  • 登录
大家好 欢迎来到 TI Precision Labs 德州仪器高精度实验室 本次课程将讨论 电气过应力的第二部分 我们将介绍更多 用于电气过应力保护的器件 例如双向瞬态抑制二极管 磁珠和 RC 滤波器 我们也将讨论在电气过应力事件发生时 放大器内部的输入保护 和 ESD 保护结构如何起作用 磁珠或者说铁氧体是很有用的保护元件 用来抵抗射频能量 对于正常工作电路的输入输出的干扰 在直流或者低频的情况下 磁珠的阻抗接近于零 而在高频 磁珠的阻抗随着频率的变化快速的增大 如右下图所示 在图中给出了几种磁珠的特性曲线 但是您可以看到 在频率为 200 兆赫兹的情况下 磁珠的阻抗可以高达 800 欧姆 基于此磁珠对于不适合放置固定电阻 但又要阻挡射频信号的情况下 是非常有用的 在之前 EOS 第一部分的课程中 我们介绍了瞬态抑制二极管即 TVS 管 我们现在来讨论 双向的瞬态抑制二极管 双向瞬态二极管 简单的讲 就像两个 TVS 管的阴极对接起来一样 在当两端电压 低于正负击穿电压相加的情况下 二极管会保持关断状态 而一旦两端的电压超过击穿电压 这个器件将会导通 并消耗掉大量的能量 双向瞬态二极管 可以用来保护放大器的输入和输出端口 在输入端 双向瞬态二极管将输入电压 限制在对运放安全的电压范围内 RC 滤波电路 用来衰减输入的瞬变信号 我们在下一页会进行进一步的讨论 输出端保护 采用一个磁珠和双向瞬态抑制二极管 来把电压限制在安全的范围内 因为采用一个固定阻值的电阻 将会造成压降误差 也可能会限制输出电压的摆幅 所以这里采用了磁珠 可是需要注意的是 这个磁珠无法在低频时 提供电气过应力事件的保护 我们在之前 电气过应力章节的第一部分的 课程中讨论过 EOS 的持续时间 可能会长达数毫秒甚至更多 可是 EOS 也可以是短时高压脉冲 在这种情况下 一个简单的 RC 低通滤波器 能帮助减小输入瞬时信号的幅度 这个示例示意了 在运放的输入端口 有一个电气过应力事件 一个截止频率为 1kHz 也即时间常数 为 160us 的 RC 低通滤波器 被放置在了运放的输入端口 对于这个 RC 滤波电路 一个常用的经验法则是 滤波后的电压 在一个时间常数内 达到 63% 的满量程值 而充满需要五个时间常数的时间 从上面的仿真示例可以看到 RC 低通滤波器的效果 输入过应力的脉冲 为一百微秒 25 伏的信号 一百微秒小于 RC 滤波器的时间常数 因此不会到输入脉冲电压值的 63% 仿真结果显示 放大器的输入电压 被限制在了 14V 这个安全的水平 当然这种保护方式是否奏效 取决于该电路的带宽 以及输入过应力电压的 脉冲时长以及幅值 除了输入和输出引脚的保护 另一个容易受电气过应力损坏的 是电源引脚 瞬态抑制二极管 也可以用来抑制电源上的 电气过应力能量 类似于图中所示的 π 型滤波器 也能够减少电源上的毛刺 超过放大器所允许的 最大输入差分电压 也会造成放大器的过应力损坏 有些放大器允许差分输入电压 等于电源电压 而另一方面有一些放大器 只允许相对较小的差分输入电压 例如 0.7 伏 这个小的差分输入电压 在双极性放大器中非常常见 这种放大器的输入差分对管 比较容易发生基极 发射极击穿 这会造成放大器的损坏 正因为如此 一般会用一对二极管 连接到差分输入端 来将差分电压限制在安全水平 如果差分电压大于二级管的压降 二极管将会导通 将电压限制在安全范围内 尽管二极管可以保护放大器的输入端 如果流过二极管的电流超过其极限值 二极管也有可能会被损坏 记住 大部分放大器的 绝对最大输入电流是十毫安 所以要确保留过这些二极管的电流 小于十毫安 我们来看下一个大的差分电压 加在放大器上的例子 对如图所示的电压跟随器施加一个方波 会导致该放大器的压摆率受限 这个话题 我们已经在之前的课程中讨论过了 当放大器的压摆率受限时 放大器的差分输入端 可能会有很大的输入差分电压 例如当输入端施加 +5V~-5V 信号时 输出不可能立即跟着变化 因此在转换瞬间 输入差分电压 可能会达到满量程的十伏 不过背靠背的二极管 将该电压限制在了 0.7 伏 如果没有采取某些限流措施 这个瞬间会有大的电流流过 出于保护 在压摆率受限的情况下 输入端口采用串联电阻 RP 来将电流限制在小于十毫安 右边的瞬态仿真图示意了 该限流电阻 如何将输入电流限制在小于十毫安 也示意了背靠背二极管 将差分输入电压限制在小于一伏 在之前的课程中 我们描述了最常用的 ESD 保护结构 可是在有些情况下 由于工艺限制或者是器件性能需要 迫使采用不同的保护结构 在这里我们示意了 OPA364 放大器内部的 ESD 防护器件 OPA364 的输入端 有我们熟悉的 ESD 二极管 但是它还有 SCR 器件 SCR 即硅控整流器 是一种一旦某个最高电压 加在它上面时就会锁住的二极管 它很像我们在 ESD 课程中 讨论的吸收器件 在这种情况下 当输入电压超过 15V 时 SCR 器件将会导通 需要注意的是 这个放大器的最大供电电压是 5.5V 因此永远不要在输入端 施加 15V 的电压 然而如果输入的电压超过了 15V 硅控整流器将会导通 并允许大电流的流过 而该硅控整流器 直到断电后才会被关闭 之所以使用硅控整流器 是因为其导通的速度 远快于 ESD 的防护器件 可以缓解 ESD 的瞬时干扰 因此硅控整流器对于 在器件不上电时的 ESD 防护非常有帮助 但是在其导通时 并经受电气过应力事件时可能会有问题 在输出端也包含一个硅控整流器 和带有限流电阻的 ESD 保护二极管 电阻是用来防止 ESD 二极管 在某些应用中由于电感的反冲而损坏 最后吸收器件也就是 Ts 其设计可以实现大概十毫秒的快速导通 需要留意的是 在电源连接极性相反的情况下 吸收器件中的二极管 DS 将会导通并泄流掉大量的电流 但是可能会导致损坏 以上就是本次课程的内容 非常感谢您的观看 请准备好进行下面的一个小测试 看看您是否已经掌握了本次课程学习的内容
课程介绍 共计4课时,49分33秒

[高精度实验室] 运算放大器 : 12 电气过应力 (EOS)

Precision Labs 运算放大器 放大器 信号链 EOS 电气过应力 高精度实验室 TIPL

哎呀,这是什么味道:为什么“冒烟测试”失败了?

该系列将讲述电气过载的成因并介绍可用于增强和测试电路稳健性以应对电气过载的几种方法。该系列中的所有示例都展示的是运算放大器电路,但所采用的方法也可应用于其他组件。

展开

推荐帖子

MSP430程序升级方式
对MSP430系列单片机进行编程的方式有以下三种:利用JTAG接口,利用BSL固件和利用用户自定义的升级固件。由于利用自定义升级固件进行程序升级的方式比较灵活,并且用途广泛,本文将对它作重点介绍。 1. 利用JTAG接口 MSP430系列的单片机都集成了JTAG接口,该接口实现了遵循IEEESTD1149.1规定的测试访问端口状态机(TAP Controller)。它使用一个四线串行接口(TE...
fish001 微控制器 MCU
电路中的图腾柱,,,
本帖最后由 qwqwqw2088 于 2019-4-6 18:16 编辑 为什么取名图腾柱?       由于此结构画出的电路图有点儿像印第安人的图腾柱,所以叫图腾柱式输出(也叫图腾式输出)。输出极采用一个上电阻接一个NPN型晶体管的集电极,这个管子的发射极接下面管子的集电极同时输出;下管的发射极接地。两管的基极分别接前级的控制。就是上下两个输出...
qwqwqw2088 模拟与混合信号
【课程推荐】+ 无线芯片性能布板关键
这个课程主要讲述了优化无线芯片性能布板的关键技巧,首先介绍的是TI无线产品,介绍用在门卡系统,公交系统,家电系列,还介绍了信号的覆盖,通信能力,内核,多协议处理,频段,蓝牙,WIFI,等方面的应用知识。从下图可以看到扩展面确实广泛。 图1可以看到涉及到的产品。 然后介绍了RF电路的硬件设计的要点,涉及面主要有射频,设计流程,参考设计,基本的关键概念,实战的错误,都是很重要的。在我们自己设计原理...
led2015 TI技术论坛
一款最大输出为 9V 5A 的反激式适配器参考设计
所介绍的参考设计方案,是一款最大输出为 9V 5A 的反激式适配器参考设计。方案采用了高效率有源钳位反激式控制器 UCC28780 和次级整流器控制器 UCC24612-2。满载效率约为 90%。集成型输入 UVLO 和输出 OVP、OCP、SCP 可提高电源系统的可靠性。 有以下特性: 在通用交流输入范围内具有零电压开关 同步整流器,使用漏源极电压检测 集成输入 UVLO、输出 ...
qwqwqw2088 模拟与混合信号

nemon

为了冒烟测试不冒烟而奋斗

2020年03月04日 19:47:41

在学习的路上

持续学习中,很是收益

2020年02月11日 16:57:29

hawkier

继续学习,长进

2019年12月06日 13:35:32

大明58

[高精度实验室] 放大器系列12 - 运算放大器:电气过应力

2019年10月08日 10:26:28

54chenjq

电气过应力 (EOS) 2

2019年09月19日 22:26:38

eva_qin7

好好学习,天天向上!

2019年09月15日 18:39:58

zx1988ZX

好好学习,天天向上!

2019年09月11日 14:01:05

zwei9

学习学习

2019年06月05日 09:40:34

君心印吾心

学习了,看老工程师的图就茅塞顿开呀!

2019年05月10日 13:39:35

xiaozhuang

学习了,不错的内容啊

2019年03月26日 13:27:40

分享到X
微博
QQ
QQ空间
微信

EEWorld订阅号

EEWorld服务号

汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved