Engineer It 系列:设计SEPIC的介绍和指南

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • Engineer It 系列:设计SEPIC的介绍和指南
  • 登录
大家好! 我叫 Xiang。 是德州仪器 (TI) 的一名应用工程师。 今天,我将为您介绍 SEPIC 变换器和使用LM3481 控制器来设计 SEPIC 变换器的设计指南。 那么什么是 SEPIC 控制器? 它代表的是单端初级电感转换器。 这是一个可以将输出电压调节为 高于或低于输入电压, 使之适合汽车应用 及宽输入电压范围的其他应用的变换器拓扑。 到目前为止,这个拓扑有两个电感器和一个电容器 组件,分别作为能量交换和存储 部件. 不过,此拓扑中的两个电感器 可替换为一个耦合电感器。 使用一个耦合电感器, 您可以减小解决方案尺寸和组件数量。 此外,您还可以降低电感值要求, 并减小电路中的振荡。 所以,对于这个 SEPIC,我们将使用 TI 的 LM3481 控制器 作为例子。 LM3481 控制器是一款非常高效 且灵活的控制器。 它不仅可以用作SEPIC 控制器, 还可以用作Boost控制器和反激控制器。 它具有宽输入电压范围、满足汽车等级要求, 并且 WEBENCH完全支持。 在该 TI SEPIC变换器示例中, 我们将采用以下规格: 输入电压4.5 伏到 20 伏。 输出电压12 伏,输出电流1安培, 开关频率500 kHz。 所以让我们先进入 WEBENCH 界面开始设计。 WEBENCH是开始 SEPIC 设计的 强大而且实用的工具。 您可以生成原理图,让您在 建议的元件中进行选择, 您还可以进行仿真。 并且让您在不同的元件中进行验证对您来说 非常有用。 接下来,我们来浏览一下原理图的 LTM 文件。 这是 LTM 的原理图。 您可以看到,对于主功率器件, 我们选择了 10 微亨耦合电感器。 对于耦合电容器,选择了 4.7 微法的陶瓷电容器。 另外,我们选择了具有足够高的额定电压和 额定电流的开关管,二极管。 3481 周围的控制电路可 根据 WEBENCH的建议进行选择。 有一点要知道的是,我在UVLO引脚上放了 齐纳钳位二极管来在输入电压 过高的情况提供保护。 还是在此原理图中,有一个可选的输入滤波器 部分,目的是为了抑制SEPIC 转换器的 EMI 噪声。 滤波器部分包含LC 差模 滤波器和共模扼流圈。 让我们来看一下布局。 对于这个 SEPIC 布局,主要功率器件 和主要电源路径包含耦合电感、 二极管、耦合电容和 开关管。 在控制器电路中,它们与 LM3481 控制器 分开放置。 在放置方面,关键电流路径 是由二极管、开关管和耦合电容器 形成的环路。 您可以看到,我将它们放置成一个非常紧凑的环路。 EMI 滤波器部分则 位于板背面。 接下来,我们来看看实际的参考电路板。 这是电路板。 您可以看到,我使用的是紧凑解决方案尺寸,大概 24*30 毫米。 这里是输入端。 这是耦合电感。 这是耦合电容。 这是二极管。 这是开关管。 这里是输出端。 左侧这里是 LM3481 IC。 周围则是控制电路。 所以,如果我们要包含可选的 EMI 滤波器,左边这里应该是 EMI 滤波器的 输入端。 我们再来看看参考电路板。 这是 EMI滤波器部分。 这里是差模LC 滤波器, 共模扼流圈在这儿。 我们来看看这一参考 设计的性能. 这一页显示了电源的效率。 您可以看到,它可以在宽范围内工作。 我们测试了从 4.5伏到 20 伏, 达到了 92% 的峰值效率。 在下一页上,显示了使用板上 EMI 滤波器后的传导EMI 扫描结果。 我们测试了 EMI 噪声。 我们根据CISPR 25 标准, 即汽车 EMI 标准执行 EMI 扫描。 左侧是从150kHz到 30 MHz的频率扫描结果。 右侧是从30 MHz 到 108 MHz 频率范围内的结果 黄线是EMI 峰值噪声。 蓝线是平均值 屏幕上有一些红线, 代表 CISPR25 类的限值。 您可以看到,我们的 EMI 扫描结果 低于要求的限制线。 所以使用 EMI滤波器的这一设计 符合 CISPR25 传导 EMI 标准。 今天,我为您介绍了 SEPIC 变换器,以及如何使用LM3481 控制器设计此变换器。 您可以看到,我们可以使用 SEPIC 拓扑 实现紧凑尺寸和高效率。 有关详细信息,您可以访问此屏幕上的链接。
课程介绍 共计12课时,1小时49分25秒

Engineer It 系列

电源 LDO 噪声 抑制比 PSRR

这是一个电源知识系列。 帮助您更好地理解 LDO,帮助您设计更好的 ADC供电,测量LDO噪声和电源抑制比,使用均流LDO来提供5A或更高电流,测量热敏电阻等 我们将 讨论如何 测量 LDO 噪声 和电源抑制比, 或者说 PSRR。

猜你喜欢 换一换

推荐帖子

攻克小型电池供电器件中低静态电流的设计挑战
得益于小型化、Bluetooth®通信和嵌入式处理方面的进步,现代助听器具有比以往更多的功能,从流媒体音乐到能够通过智能手机上的应用程序调节听力放大。 然而,要实现这些增强的功能需要付出代价:现代功能需要更多功率。功耗的增加对于设计助听器的工程师来说是一项挑战,主要是因为旧版本使用一次性锌空气电池。如图1所示,这些电池的续航能力通常约为两周。但当为助听器添加更多功能时,例如让它们能够...
alan000345 TI技术论坛
更加智能:智能电池电量计如何有效改进动态血糖监视仪的电池使用寿命
人体血糖值的偏高或偏低都有可能导致严重的健康威胁,因此监测血糖水平是重中之重。目前全球已有1.5亿人口罹患糖尿病,所以个人便携型血糖监测仪(BGM)的需求巨大。 图1所示的动态血糖监测仪(CGM),可帮助糖尿病患者实时检查血糖读数,也可在超长时间段内监测血糖值。CGM能够持续监测血糖水平,然后在用户血糖值达到危险值时提示用户。这款监测仪通常包含图2所示的传感器单元和图3所示的聚合器单元。 ...
alan000345 TI技术论坛
推挽电路简单介绍
       要介绍推挽电路,首先介绍功放的一些基本知识。从能量控制的观点看,功放电路和电压放大电路没有本质区别,但后者的要求是使负载得到不失真的电压信号,而前者的要求是获得一定的不失真的输出功率。在放大电路中,输入信号在整个周期内都有电流流过,称为甲类放大;如果只有大半个周期有电流流过,称为甲乙类放大;如果只有半个周期电流流过,称为乙类放大。 &nb...
fish001 模拟与混合信号
MSP430FW427的无磁水表设计方案
MSP430FW42x单片机介绍   MSP430FW42x系列单片机是TI公司针对电子式流量与旋转运动检测最新开发的专用MCU芯片,它将超低功耗MCU、旋转扫描接口(SCAN IF)和液晶显示LCD驱动模块完美地结合在一起。该器件的超低功耗结构和流量检测模块不仅延长了电池的寿命,同时还提高了仪表的精度与性能。MSP430FW42x的典型应用包括热量仪表、热水和冷水仪表、气体仪表和工业流量计...
fish001 微控制器 MCU
分享到X
微博
QQ
QQ空间
微信

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved