- 本课程为精品课,您可以登录eeworld继续观看:
- UCD3138 控制方案
- 登录
- 课程目录
- 相关资源
- 课程笔记
大家好
我是德州仪器的系统工程师 David
今天非常高兴和大家继续分享
TI 双向 DC-DC 变换器拓扑的设计和对比
今天主要讲解
双向 DC-DC 变换器的控制部分
这两种拓扑都是基于 UCD3138 来控制的
UCD3138 是一个多功能的数字控制芯片
它由三个硬件数字环路
和一个基于 ARM7 的控制器组成
这三个数字环路可以独立运行
也可以串联运行
三个环路都带有 14 位的 DAC 参考
带有多参数设定的
双极点双零点 PID 滤波器
UCD3138 有三种控制模式
脉宽模式 移相模式 以及谐振模式
对于拓扑可以实现
恒压恒流和恒功率的控制
输入电压的前馈和检测
内部带有斜坡补偿的峰值电流控制
逐周波限流功能
八倍过采样或者平均的 EADC
带有硬件滤波以及
双重采样保持功能的 12 位 ADC
可以编辑自动 PWM-LLC 和
PWM 移相的开关模式
轻载运行时采用 Burst 模式
内部集成了铜线的电流检测
集成了每相的电流检测
具有八个精度达到 250ps 的 DPWM
32 位 32 兆的 ARM7
多通道 12 位
速度高达 256 ksps 的通用 ADC
片上集成了欠压关机和复位的功能
供电采用 3.3V
片上集成了电源参考和振荡器
有两个 UART 口和可编程的 PMBus 接口
最大开关频率可以达到两兆
频率的分辨率可以达到 4ns
外部中断以及失效的输入输出
芯片的工作温度
范围覆盖标准的 -40 度到 125 度范围
封装采用 64 pin 或者 40 pin 的 QFN
节省芯片功耗的功能等等
以上罗列的 UCD3138 的这些特性
适合应用于汽车
以及服务器双向 DC-DC 变换器中
下面介绍这两种拓扑的控制信号部分
有三个控制环路
电流环 12V 电压环 48V电压环
其中电流环是 4 项电流的和
当电压达到设定点之前
变换器工作在恒流模式
采样每一相电流用于均流
电流的运行通过数字通信
或者 ADC 的输入
对于软开关模式的运行还需要额外的控制
主要有三点
第一 轴向负电流的检测
第二 PWM0 编辑负电流的门槛值
比较器的输出接到 sink 脚
第三 sink 脚的信号用于变频控制
这一页主要介绍多相交错时
电流纹波和选择相位的关系
左边这张图可以看到当两相交错时
电感电流纹波的加和减小了接近一半
右边这张图列出了选择的相位数
和电感电流纹波加和的关系
占空比直接决定了相位数的选择
我们这个设计的输入输出是 48V 和 12V
所以从图中可以看到
选择 4 的倍数时电感的电流纹波的加和最小
考虑到功率以及成本
这个设计选用四相交错并联
下面这张图介绍了具体的 UCD3138
硬件电路之间的分配
三个环路包括四相电流的加和
以及 12V 48V 送到 EADC
4 对 DPWM口用于控制四相主电路的
八个开关管
ADC 采样的信号包括 48V 和 12V 电压
每一相的电流 pcb板的温度 MOSFET 的温度
sink 的信号做电平的控制
以及使能引脚和方向引脚选择
IO 输出的 Switch 开关
作为 12V 电池的防反接功能
PWM0 1 用作负电流的检测门槛值的设定
最后即为错误保护的信号
以上内容即为 UCD3138 的控制部分
谢谢大家
课程介绍
共计5课时,25分33秒
猜你喜欢
换一换
推荐帖子
- AT-C08803A 时钟芯片资料谁有?全网找不到相关的数据资料。
- ZT-C08803A 是一颗时钟芯片,主要用在指纹考勤机内的,这颗IC全网都查不到相关的资料,哪位大神可以无私奉献?谢谢! ...
-
niuyite
DSP 与 ARM 处理器
- 【EEworld原创教程讨论】《MCU 工程师炼成记》BUG欢迎大家前来投稿
- 本帖最后由 Sur 于 2014-4-1 19:48 编辑 大家都知道一本书,因为印刷、排版等总是会有点小错误,但是这点小错误给您带来了错误的知识就不好了,所以特开一贴希望大家把知道的错误帖出来,最后进行整理。 本帖的主要目的是收集BUG,方便以后整理,所以大家不要担心,次序,分类,这些问题,当然大家,把章节,页码都标清楚是最好的 ...
-
Sur
微控制器 MCU
- F28027用TM1628驱动共阴数码管,求解!
- 我的TMS320F28027用TM1628驱动共阴数码管,按照规格书的例子,地址没有错, 但数码管不能显示? 共阴地址是GRID5、GRID6、GRID7。 我采用固定地址方式。 0XC8地址不能显示,但0XCA地址能显示,真奇怪 我用合泰的单片机就可以驱动file:///C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\_A~_C_F`%IP6P74Q9KE%$%5....
-
chinaping
微控制器 MCU
- (转)如何计算电阻器自发热影响
- 转 电阻器自发热的计算是一个非常基本的概念,但很多工程师对它并不熟悉,或经常被他们忽略。在我阐述最近设计的高精度电阻式温度检测器 (RTD) 采集系统的原理时,我意识到了它的重要性。对于图 1 中的简化设计,需要考虑信号路径中电阻器自发热引起的误差,才能防止它们所导致的不希望出现的误差级。 图 1:简化的比率计 RTD 系统 &nb...
-
qwqwqw2088
模拟与混合信号