测试结果的比较

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • 测试结果的比较
  • 登录
大家好 我是德州仪器的系统工程师 David 今天非常高兴和大家继续分享 TI 双向 DC-DC 变换器拓扑的设计和对比 今天主要讲解 双向 DC-DC 变换器拓扑的测试结果的 开关波形和效率的对比 首先来看硬件电路的选择 考虑到功率以及尺寸 硬开关的开关频率定在 140 kHz 可以通过计算得到 满载时电感的纹波电流为 16.25A 计算出电感值为 4.7uH 所以选用 Coilcraft 的 1.86 毫欧的这个电感 软开关的开关频率满载时 100 kHz 轻载时嵌位在 450 kHz 可以通过计算得出 满载时电感的纹波电流为 65A 计算得出电感的值为 1.4 uH 所以选用 TDK 的 0.618 毫欧的电感 由于开关频率的增加 所以看到选用的线材为多股并绕的丽兹线 硬开关模式下 开关管选择英飞凌的 100 V 1.7 毫欧的管子 而软开关模式下选用的 英飞凌 80V 1.5 毫欧的管子 对于保护用的防反接的管子 48 V 的保险丝 电感电流 采样电阻 以及 48V 输入 滤波器部分 硬开关和软开关的拓扑 选择的器件都是一样的 下面即为实物图 左边接 48 V 电池 右边接 12 V 电池 整机的长宽尺寸为 7.5 英寸和 5.0 英寸 这个图显示了软开关模式下 三相的开关节点的波形 以及主项电感电流的波形 可以看到开关节点的电压的上升率比较平滑 软开关模式轻载时最大开关频率为 450 kHz 满载时开关频率为 100kHz 接下来四张图会介绍 硬开关和软开关 12 V 侧 20 A 和 110 A Buck 和 Boost 时波形对比 Buck 模式下同步管到主管开通的 死区时间为 220 ns 主管关断到同步管开通的时间 基于负载电流而变化 首先来看看 Buck 模式下12 V 侧 20 A 情况下 硬开关和软开关的开关节点 和电感电流纹波的对比 可以看到硬开关模式下有 6V 的电压过冲 软开关模式下 电压的上升率比较平滑 再看 Buck 模式下 12V 侧 110 A 波形对比 可以看到硬开关模式下 有 20V 的电压过充 软开关模式下有接近12伏的 Undershoot 这主要是因为软开关模式下 电感电流的纹波会非常大以及 PCB 板和 MOSFET 的寄生感抗的影响 再看 Boost 模式下 12V 侧 20A 波形对比 可以看到硬开关模式下电压下降得非常快 软开关模式下电压的上升率和下降率都比较平滑 最后来看 Boost 模式下 12V 侧 110A 波形对比 可以看到硬开关模式下有 20V 的电压过冲 软开关模式下有接近12伏的 Undershoot 这也是因为前面提到的软开关模下 电感的电流非常大 以及 PCB 板和 MOSFET 的寄生感抗的影响 下面即为双向运行时的开关节点波形 12V 侧电池的电流以及电感电流波形 可以通过软件设定 12V 电池 工作在 Buck 或者 Boost 模式 以及设定电流的上升时间和下降时间 设定 Buck 和 Boost 模式的理想的切换的时间 设定 48V 和 12V 电池的过压 欠压门槛值 同时开发了控制的 GUI 界面 左边为 UCD3138芯片的 GUI 界面 方便软件调试 以及监控软件运行时寄存器的值 电路运行时参数的变化 右边为系统的 GUI 界面 方便系统测试 系统参数的设定 以及监控系统运行状态和电池的电压 电流 以上即为双向变换器 测试结果的开关波形和效率的对比 谢谢大家
课程介绍 共计5课时,25分33秒

双向 DC-DC 变换器拓扑的对比与设计

汽车 数据中心 变换器 服务器 拓扑 DCDC 双向 UCD3138

本课程讲述了双向DC-DC变换器的应用概述和拓扑结构,重点描述了汽车,服务器和数据中心类的应用。对四相交错固定频率双向转换器和四相交错ZVS双向转换器的拓扑结构进行了对比,讲述了基于UCD3138的控制方案及其实现。并对测试数据的开关波形和效率进行了比较。

推荐帖子

msp430的数字IO与CPU运行速度有关吗
最近在学430,有个问题。就是某一IO口作为输入的时候,输入的速率是不是不能太快,得等CPU读取后才继续输入,否者会覆盖之前的数据??求有经验的指导指导。...
archimedesh 微控制器 MCU
液晶屏初始化时花屏了,求助!
液晶屏初始化时花屏了!(LCD12864带字库的)LCD12864 带字库的。在我对液晶屏初始化时,设置到“进入设定点”这一步,用api函数SSIDataPut(SSI_BASE, data) 发送命令字0x06,就花屏了!这是为什么? ...
awfiiqnqtd 微控制器 MCU
0.9V MSP430L092 MCU 使单电池供电的产品更轻巧更绿色
电子产业不断发展的趋势是开发功耗更低、支持更小电池供电的产品。但是目前单体电池供电产品的系统解决方案通常并未针对这一目标进行全面优化。德州仪器 (TI) MSP430L092 MCU 可通过 0.9V 工作电压提供超低功耗,帮助实现这类产品。对于采用单体 1.5V 碱性电池供电的产品来说有两种主要系统级解决方案。第一种系统使用多体电池,例如两节 AAA 电池。这样会直接导致最小物理尺寸限制,因为产...
fish001 微控制器 MCU
SensorTag android设备试用(含android app)
    参与论坛TI促销,我抢红包!活动,本来想等到货了发个开箱,看到订购的SensorTag 从大西洋那边飘过来仅用了3天,这速度让我和小伙伴们都惊呆了一把     可惜到货那天是周五,没给派送,一直等到今天下午终于送来了,看到坛子里的大神们好多已经比我先拿到了板子,而且发了不错的开箱,相关链接请看: [晒心得]CC2541DK-SENSOR 骚红...
eric_wang 无线连接

天天1

讲解的还算详细,入门看看还是可以的

2020年12月26日 19:46:36

pol666

双向DCDC设计,学习ing。

2020年09月11日 12:15:23

jpf

双向 DC-DC 变换器拓扑的对比与设计

2020年07月24日 13:56:12

54chenjq

双向 DC-DC 变换器拓扑的对比与设计

2020年06月15日 01:08:13

hawkier

好好学习了哦

2020年03月31日 17:30:56

大明58

双向 DC-DC 变换器拓扑的对比与设计

2019年10月30日 08:54:38

zx1988ZX

学习了,不错是知识,呵呵

2019年08月18日 13:05:03

dingxilindy

学习 双向 DC-DC 变换器拓扑的对比与设计

2019年08月07日 11:28:46

zwei9

学习学习

2019年05月21日 09:59:01

君心印吾心

简单了解下,受益匪浅

2019年05月07日 17:09:45

分享到X
微博
QQ
QQ空间
微信

EEWorld订阅号

EEWorld服务号

汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved