1.1.1 电压源

+荐课 提问/讨论 评论 收藏
播放器加载失败: 未检测到Flash Player,请到安装
  • 课程目录
  • 相关资源
  • 课程笔记

好,我们接下来讲电压源 那么大家对于什么是电源 感觉很简单 市电呢220V,是交流电源 锂电池呢是4.2V的直流电源 干电池是1.5V的直流电源 但是只要能输出电压的电路就是电源吗? 此外我们生活中遇到的上述电源 其实是电源的一种,电压源 对于另外一种电流源 对于另外一种电流源 我们知道得其实很少 那么我们这节课呢讲两个内容 一个是电压源的本质 一个是电压源的内阻 先来看电压源的本质 位于书本的2.1.1节 我们看图示所示电路 一个电位器接在5V电源上 电定位器呢调到中点位置 所以呢我们用电压表就可以量到电压2.5V 那么我们可以把它看成是一个2.5V的电压源吗? 当然是不可以的 因为我们一旦给它带上负载 那么它的电压立刻会下降 由于分压关系,我们很容易可以得到变成1.67V 那么什么样的电路可以称为电压源呢 就是无论带什么样的负载 输出电压保持不变的电路才是电压源 那么我们怎么做到带什么负载都保持不变呢 这里我们引入一个全新的视角 去理解电压和电流的关系 那么就是一个电路 如果想输出电压不变 那么它必须有输出强大电流的能力 如图所示的电路 在2.5千欧的轻负载下 我们一算它只需要提供2mA的电流 我们就可以看成是一个5V的直流电源 那么我们把负载改变 现在负载非常重 只有一个毫欧 那么这个时候你还想要输出5V电压 就必须给负载上提供5KA的电流 那么这样才能成为一个5V的直流电压源 所以对于电压源来说 它最根本的能力是能够提供负载所需的电流 至于输出电压是否精确稳定 我们是可以靠其它方法手段来实现的 好,电压源的内阻 位于书本的2.1.2节 在一般教材中 我们总是把电压源等效为 理想的电动势与内阻的串联 拥有极小内阻的电源就是电压源 那么在这种理解下呢 好像我们需要做的事情 是用更粗的铜线去减小真正的电阻一样 那么实际电压源的内阻呢 不能想象成真实的导线电阻 而是一个等效电阻的概念。 我们图示的电压源 黄色虚线框内的 它的内阻很大,2.5千欧 按常理来说,它不能当做电压源 按常理来说,它不能当做电压源 但是我们只要负载接的够轻 比如说我们接1兆欧的负载 那么它输出电压就几乎就是5V 我们左边的黑匣子电源就可以看成是5V电压源 那么我们保持电源内阻不变 负载变成2.5千欧的时候 负载加重了 我们偷偷地去把电动势加大了 改到了10V 那么在外部电路 负载看过去 它依然输出的是5V电压 那么这就是一个没有内阻的电源 带载和不带载输出电压是完全相同,内阻为零 其实我们用这种方法,改变电动势的方法 我们会毫无压力地制造出0欧内阻的电源 但是对于负载上所需要的2mA电流 你这里是5V 除以负载得到这个电流是骗不了人的 所以呢对于电压源来说 它的本质是电流提供者 它的本质是电流提供者 我们对电动势和内阻 可以这样理解 回到之前的1毫欧重负载上来 如果我们的电源的提供不了5000A的电流 比如说2500A只能提供 那么我们现在对负载上的输出就变成了 2.5V,2500A 对此,我们可以有多种理解 参考图A,我们可以看成电动势不变 由于有了1毫欧的内阻 所以我的电流降到2500A 输出电压2.5V 我们其实还可以看成呢 没有内阻 但是因为我的电源输不出5000A 只能输2500A 所以我的电压降下来了 只有2.5V 这样的效果一样 输出电压2.5V,2500A 负载看起来 它看电源是没有任何区别的 我们再参考图C 电压和内阻都发生了改变 电压降低了 有了500微欧的内阻 那么对负载来说 它并不知道里面发生了什么 效果还是一样 我们还可以认为内阻很大 有1欧 那么这个时候呢 要输出2500A 电压必须上升到2500V。 才能达到同样的效果。 当负载改变时 同样的输出结果 对电源电动势和内阻改变 是有很多种可能的 只不过通常情况下 我们假定电动势不变来计算虚线的里面 内阻有多大 那么内阻是怎么定义的呢 就是比如说空载时候输出是5V 带载时候输出电压减半2.5V 这个时候的负载大小就刚好等于内阻 那么在我们这种情况里 就是认为1m欧带上去以后电压减半 那么你的内阻就是1m欧 好,本课小结 电压源的等效内阻并不真实反映电源的电动势和导线电阻 而是人们约定的一种参数描述方式 在实际应用中我们其实不是去减小等效内阻 而是偷偷地改变电动势的方法 来实现对电压稳定的 对于电压源来说 带负载以后 它就需要提供相应的电流 你是电压源,电压固定 你带什么负载 电压除以电阻就得到电流 这个电流是你一定给负载提供的 是无法投机取巧的 这个才是电压源的本质 好,这节课就到这里
课程介绍 共计80课时,9小时48分45秒

电子电路基础知识讲座

电源 MOSFET 放大器 噪声 电子电路基础 university

本系列课程目前共有80讲,由青岛大学和TI德州仪器联合推出,傅强老师主讲。从模拟及电源出发,系统系列地讲解了电路设计上的基础知识,从多方面多角度给学员提供了全面学习的机会,也是工程师快速查找相关基础知识的便捷手段。

猜你喜欢 换一换

推荐帖子

一个关于DSP28335的ADC模块采集电压问题
       各位大佬,我想请教两个问题。他困扰了我一个下午,不胜感激!!!       问题1:我使用TI公司TMS320F28335配置4路ADC通道,没有接入外部电压但是已经有1V电压值值。非常奇怪?       问题2:我只把一路(A0)和模拟地短接,为什么会影响(A1)通道电压...
闵丨大 微控制器 MCU
探秘DLP® NIRscan™ Nano评估模块
      作为工程师和开发人员,我们的工作就是找到一个将所有元件组合在一起的最佳方法。不管是对于摩天大楼、还是集成电路,内部工程结构都是决定是否能够运转良好的关键之一。但说回来,又有谁不曾幻想做个“破坏王”,把东西都拆开来一探究竟呢?我们最初的与工程设计有关的记忆大部分都来自小时候把看起来复杂——甚至是昂贵&mdash...
Jacktang DSP 与 ARM 处理器
MSP430™ FRAM微控制器实现能量采集
对于很多人来说,第一次接触能量采集可能是在早期使用太阳能便携式计算器的时候,虽然如今这种类型的计算器已不再是主流,但是它所使用的技术和理念仍然应用于我们的日常生活中。目前,我们在许多的应用中都能看到能量采集的身影,例如传感器节点、风力涡轮机和室内供能应用等。不过,即使对于这项技术的讨论较之前已经有了很大的发展,当涉及到能量采集时,开发人员仍然面临着与数十年前一样的挑战。 为了在不带来负面影响...
灞波儿奔 微控制器 MCU
430读DS18B20温度传感器
DS18B20的单总线上需要上拉电阻,正好430的IO可以设置上拉,就直接用430的上拉了。结果。。。在这个地方卡了一整天,怎么都读不出数据。外加了一个上拉就好了。看来,设计不能图省事,该有的上拉还是得加啊。。。...
armcu 微控制器 MCU

eew_vuUGKG

傅强老师讲的这个知识覆盖很广,很适合刚入门,或者刚毕业的自学。

2024年05月11日 23:18:04

dsl7392

基础的东西,再看一遍

2023年03月29日 16:05:42

单片机学海无涯

播放不出来

2022年11月19日 11:15:49

郝艳强

赞,都是干货,感谢老师

2022年03月31日 21:34:33

小太阳yy

这个要是有问题能提问 就好了

2021年09月06日 17:45:20

风语者之哥

1.2.1 中开关刚刚合上的瞬间,AM6等于4.5V应该是VF2除以R6,视频讲错了

2021年02月10日 15:59:41

lihaifeng280

学完受益匪浅,感谢老师,感谢博主

2021年01月07日 18:17:45

shenghuifeng

夯实基础,好好学习,天天向上,加油加油!

2020年12月17日 16:27:31

sunm_wang450

课时12 3.1.3 二极管的分类中,有关稳压管的部分讲的是有问题的, 10V电池,直接供电给5V稳压管,当电池电流小于稳压管能承受的电流时, 即稳压管功率没有达到最大值时(散热充分)就可以达到稳压5V的效果。 不太确定是我错了,还是视频中讲错了,希望大家讨论指正。

2020年11月11日 00:10:39

guojunbjut

这种结合最新的芯片,最新的用法,对电路的讲解,感觉比较实用,比传统上只讲基本原理好很多。

2020年10月22日 09:09:43

分享到X
微博
QQ
QQ空间
微信

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved