- 本课程为精品课,您可以登录eeworld继续观看:
- 3.5.4 甲乙类功率放大电路
- 登录
- 课程目录
- 相关资源
- 课程笔记
好,这节课我们来介绍
甲乙类功率放大电路
它位于教材的3.6.6节
图示的乙类功率放大电路
在小电流时性能良好
但是用于大功率功放电路时
会有热击穿问题
在大功率情况下
三极管 T1 和 T2
它的发热
远比二极管 D1 和 D2 要严重
因为它们的电流相差悬殊
T1 和 T2 流过的是主电流
由于-2.5 mV/℃ 的温漂作用
UBE 会随着温度的升高
而逐渐降低
但二极管的管压降
是基本不变的
造成了 T1 和 T2 同时导通
温漂的最终结果是
T1 T2 因为过流发热而损坏
这种现象就被称为热击穿
好,我们来仿真一下
添加二极管 D3 D4
来模拟二级管管压降
高于三极管 UBE 的情况
等效一下
电流表读数为256毫安
远远超过5伏电压
加载在1000欧负载上的电流
我们可以算一下
我电源电压
单端也就是5伏
负载电阻1000欧
最多也就是5毫安
可是呢
我 T1 T2 上的电流
能达到256毫安
哪来的
如此大的电流
它的来源是 T1 和 T2
同时导通产生的
这个电流并不流过负载
直接导通下去了
这么大的电流
长时间
肯定 T1 T2 扛不住
而这个电流为什么
没有进一步增大
怎么没有短路呢
是因为 R3 和 R4
对三极管基极电流的限制作用
R3 R4 的电流
控制着我们的基极电流
而基极电流
实际上呢
控制着我们的 iE 电流
因为 R3 上电流的有限值
我们的 iE 不可能无穷大
引入 R4 R5 后
电路变身为
甲乙类功率放大电路
相当于部分引入了 RE
有点像甲类功放
会有额外的功耗
但是明显小于
甲类功放 RE 上的功耗
那么我们实测看到
T1 T2 上电流
只有25.96毫安
是可以的
本课小结
乙类功放有热击穿问题
二极管发热小于三极管发热
PN 结电压不能抵消
乙类功放在大功率应用时会烧毁
T1 和 T2 上会流入比较大的电流
加入 R4 R5
可以构成甲乙类功放
它可以限制热击穿电流
好了,这节课就到这里
课程介绍
共计80课时,9小时48分45秒
猜你喜欢
换一换
推荐帖子
- 电源转换器的EMI问题 — 辐射发射
- 辐射电磁干扰 (EMI) 是一种在特定环境中动态出现的问题,与电源转换器内部的寄生效应、电路布局和元器件排布及其在运行时所处的整体系统相关。因此,从设计工程师的角度出发,辐射 EMI 的问题通常更具挑战性,复杂度更高,在系统主板使用多个 DC/DC 功率级时尤为如此。了解辐射 EMI 的基本机制以及测量要求、频率范围和相应限制条件至关重要。本文...
-
qwqwqw2088
模拟与混合信号
- 新型电路原理
- 图1所示是隔离放大器的原理电路。本隔离放大电路主要由光电耦合器和运算放大器构成。光电耦合器选用普通光耦TLP521,运算放大器则选择通用运算放大器LF353。通过这两种普通器件的搭配。所得到的隔离放大器性能和专用模拟隔离放大器的性能相近。 图1所示是放大器加普通光耦组成的隔离放大电路。本隔离放大电路由输入和隔离输出两部分构成,且两部分使用隔离的电源(Vcc1、Ve...
-
fish001
模拟与混合信号
- 锂电池充电及充电保护电路
- 通过锂电池向电路系统提供3.3V电压,并具备USB充电功能及过充保护功能. USB充电采用TP4056芯片电路实现.TP4056为单节锂离子电池恒定电流/恒定电压线性充电器,内部采用PMOSFET架构并结合防倒充电路,因此不需要外部隔离二极管.热反馈可对充电电流进行自动调节,以便在大功率操作或高温环境温度条件下对...
-
Aguilera
模拟与混合信号
- 单片机系统中最常用的三种通信协议解析
- 顾名思义就是串行外围设备接口。SPI是一种高速的、全双工、同步通信总线,标准的 SPI 也仅仅使用4个引脚,常用于单片机和 EEPROM、FLASH、实时时钟、数字信号处理器等器件的通信。SPI 通信原理比 I2C 要简单,它主要是主从方式通信,这种模式通常只有一个主机和一个或者多个从机,标准的 SPI 是4根线,分别是 SSEL(片选,也写...
-
Aguilera
微控制器 MCU