4.3.1 差分放大器

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • 4.3.1 差分放大器
  • 登录
  • 课程目录
  • 相关资源
  • 课程笔记

特殊运算放大器 位于书本的4.3节 包含7个小节 单独只有运放是没有实现放大电路功能的 那么放大电路呢还需要外接电阻、电容或者其它元件 如果我们将这些外部元件与运放集成在一起 那么可以简化应用或者提高性能 这就构成了一些特殊的放大器 差分放大器 位于书本的4.3.1节 差分放大器无需外部电阻就可以直接构成减法电路 将两个信号的差值放大特定倍数 我们前面介绍了由运放搭配电阻搭建的减法电路 如图所示呢是一个一百倍的减法电路 根据虚短虚断和叠加原理 输入输出关系可以这样计算 UP 的电压单独由 UI2 得到 它等于 UN 而 UN 的电压呢是由 UI1 和输出电压 UO 共同叠加得到的 当关系式 R1×R3 = R2×RF 精确成立的时候呢 输出电压关系式可以简化为 把信号放大,RF 除以 R1 倍 减法放大 那我们的输入信号分别为 5.01V 和 5V 所以输出电压就变成了100×0.01 应该是 1V 由于电阻是有精度的 这个关系式是没有办法精确成立 我们假设其它电阻值完全精确 只有电阻 R1 的精度是5% 那么我们通过直流传输特性仿真来观察误差带来的影响 我们发现当 R1 的电阻由950Ω变化到1.05K的时候 输出电压差不多变化了20% 也就是说单个5%误差的电阻就使得电路的输出精度变成±20% 我们继续仿真 我们改变输入信号的共模电压 从差不多 5V 变成 2V 比如说我现在信号呢是2.01-2 其它依然是精确 只有电阻 R1 的精度为5% 我们继续仿真 现在直流传输特性发生变化 这会呢输出电压的变化范围差不多是 950mV 到 1.05V 之间 比之前稍好 通过两个仿真图对比表明 减法电路不仅仅放大了差模信号 因此呢5.01-5的效果和2.01-2的效果才会不一样 但是我们仿真所使用的是理想的运放 也就是说运放本身的 CMRR 共模抑制比是无穷大的 当不满足这个关系式的时候 我们的减法电路公式实际上只能简化为现在这个样子 并不是一个两个差值的倍数这么一个线性关系 它的输出信号不仅与输入信号的差值有关 而且会放大共模信号 我们要知道运放本身的共模抑制比 和运放构成放大电路的 CMRR 是两码事情 我们这个运放的放大电路中 只要有一个电阻有0.1%的误差 减法电路的总的 CMRR 将下降到 66dB 如果电阻的误差是1%那么总的 CMRR 会降到 46dB 那么差分放大器呢 将减法电路所要用到的四个电阻集成到了运放内部 用一定技术把它的阻值调高非常高的精度 那么如图所示呢是 INA143 的原理图 它内部集成了两个 10kΩ 的电阻,两个 100kΩ 的电阻 如图所示的接法是十倍放大 信号呢先进 10k,反馈用 100K 那么它就是一个十倍的差值放大 如果我们的信号先进 100K,拿 10K 做反馈 那么呢它就构成了一个0.1倍放大 由于电阻结构是对称的 所以我们既可以接成十倍放大 也可以接成0.1倍的差分放大 当然我们不能外接电阻再变成其它放大倍数 特别注意的是差分放大器的输入信号必须是低内阻的 因为信号源内阻等同于集成内部的电阻的地位 如图所示的仿真很容易理解信号源内阻影响 我们看 R1 是精确的,10k 但是信号源内阻的地位和 R1 是串联 它的地位和 R1 完全等同 也就相当于是 R1 的精度误差 我们仿真继续用直流参数扫描仿真 如果信号源的内阻从零开始一直达到了 1kΩ 的话 那么差不多能影响8%的输出电压 差分电路的精度下降了 如果我们是低内阻信号 内阻只有 10Ω 我们直流参数扫描从 0Ω 涨到 10Ω 的话 我们看一下差不多对输出电压的影响就小于1‰ 所以输入给差分放大器的信号尽量要是低内阻的 关于差分放大器的选型 我们在 TI 网站上 我们选择差动放大器 不同公司叫法不一样 我们主要关注增益 CMRR 也就是它取决于它内部电阻的精度怎么样 带宽 本课小结 电阻的精度会影响减法电路的精度 对于这么一个放大一百倍的减法电路 理论输出值为 1V 但如果只要有一个电阻的精度是5% 那么输出的效果就会变成 不是 1V 而是在 800mV 到 1.2V之间 那么差分电路内部集成电阻 我们可以把2、3引脚当成输入 也可以把1和5引脚当成输入 它们是对称的 那么把2、3当成输入信号就是十倍放大 把1、5当成输入信号呢就是0.1倍放大 那么信号源的内阻 它的地位等同于集成在芯片内部的电阻的地位 你芯片内部电阻是精确的但是呢 R5 不精确直接就是相当于它的误差 那么影响的程度呢 如果达到了 1kΩ 就是你的信号内阻有 1kΩ 的话 你大概会影响到8% 精确是 1V 但是你有可能输出 1.08V 如果是低内阻,只有 10Ω 的话我们看 不到千分之一的误差 好,这节课就到这里
课程介绍 共计80课时,9小时48分45秒

电子电路基础知识讲座

电源 MOSFET 放大器 噪声 电子电路基础 university

本系列课程目前共有80讲,由青岛大学和TI德州仪器联合推出,傅强老师主讲。从模拟及电源出发,系统系列地讲解了电路设计上的基础知识,从多方面多角度给学员提供了全面学习的机会,也是工程师快速查找相关基础知识的便捷手段。

推荐帖子

具有_SNRBoost_技术的最低功耗_4_通道_ADC_
本帖最后由 dontium 于 2015-1-23 13:40 编辑 具有SNRBoost 技术的最低功耗 11 位 200 MSPS ADC 4 通道、双通道与缓冲单通道选项 德州仪器 (TI) ADS58C48 系列是业界最低功耗的 11 位 ADC,速率高达 200 MSPS。 ADS58C48 系列采用 TI 专有 SNR...
安_然 模拟与混合信号
开关电源中光耦隔离的几种典型接法对比
      在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。 1、常见的几种连接方式及其工作原理 常用于反馈的光耦型...
qwqwqw2088 模拟与混合信号
LM3S SSI读写CAT93C46?
LM3S SSI读写CAT93C46,总是读到0.    // Enables a peripheral SSI0    SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);  // Configures pin(s) for use by the SSI peripheral /...
yuchenglin 微控制器 MCU
CPU架构、开源架构与架构授权,我来说
计算机指令从指令集的长度特点分类:有RISC(Reduced Instruction SetComputing)和CISC(Complex Instruction SetComputer)。     典型的就是手机SOC里的CPU99.99%都是RISC,我们的PC主板上的CPU99.99%都是CISC指令集。具体一点基于ARM的都是RISC,基于X86/64的In...
fish001 DSP 与 ARM 处理器

eew_vuUGKG

傅强老师讲的这个知识覆盖很广,很适合刚入门,或者刚毕业的自学。

2024年05月11日 23:18:04

dsl7392

基础的东西,再看一遍

2023年03月29日 16:05:42

单片机学海无涯

播放不出来

2022年11月19日 11:15:49

郝艳强

赞,都是干货,感谢老师

2022年03月31日 21:34:33

小太阳yy

这个要是有问题能提问 就好了

2021年09月06日 17:45:20

风语者之哥

1.2.1 中开关刚刚合上的瞬间,AM6等于4.5V应该是VF2除以R6,视频讲错了

2021年02月10日 15:59:41

lihaifeng280

学完受益匪浅,感谢老师,感谢博主

2021年01月07日 18:17:45

shenghuifeng

夯实基础,好好学习,天天向上,加油加油!

2020年12月17日 16:27:31

sunm_wang450

课时12 3.1.3 二极管的分类中,有关稳压管的部分讲的是有问题的, 10V电池,直接供电给5V稳压管,当电池电流小于稳压管能承受的电流时, 即稳压管功率没有达到最大值时(散热充分)就可以达到稳压5V的效果。 不太确定是我错了,还是视频中讲错了,希望大家讨论指正。

2020年11月11日 00:10:39

guojunbjut

这种结合最新的芯片,最新的用法,对电路的讲解,感觉比较实用,比传统上只讲基本原理好很多。

2020年10月22日 09:09:43

分享到X
微博
QQ
QQ空间
微信

EEWorld订阅号

EEWorld服务号

汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2023 EEWORLD.com.cn, Inc. All rights reserved