4.5.3 相位补偿

+荐课 提问/讨论 评论 收藏
  • 本课程为精品课,您可以登录eeworld继续观看:
  • 4.5.3 相位补偿
  • 登录
  • 课程目录
  • 相关资源
  • 课程笔记

运放电路的稳定性(三) 相位补偿 A.5 节 相互补偿这个词我们并不陌生 在示波器探头上,就有一个专门的相位补偿旋钮 但是真正明白为什么要相位补偿 以及补偿原理的却不是很多 如图所示呢 是未经相位补偿的示波器输入级电路 是未经相位补偿的示波器输入级电路 R1、R2 构成1/10分压电路 CIN 呢为示波器的输入等效电容 为了便于观察呢,我们输入信号选用了 1v ,1KHz/2VPP 的方波 也就是通常示波器的自检信号 也就是通常示波器的自检信号 显然呢 R1 电阻和电容会构成一个低通滤波器 那么瞬时现象也仿真也表明 1/10分压的效果不仅把幅值减小了10倍而且呢 变成圆头圆脑的了 边沿变成缓慢上升低通效应 那么如图所示呢 是经过相位补偿的示波器输入级 Cc 为补偿电容 实际上呢是一个可调电容 那么两个电阻两个电容共同构成阻容分压电路 根据阻抗原理这时候阻抗比呢是 电容和电阻并联阻抗比上这个电阻电容并联阻抗 我们列出一长串式子 那么当满足以下关系的时候,也就是说 电阻比等于电容比反比的时候呢 分压比可以简单地变成 就等于电阻比 也就是说这个时候呢 是完全补偿 我们经过计算呢 Cc 应该用 6pF 那么仿真表明这个时候呢,输出输入输出没有延迟 实现了完全的相位补偿 如果继续增大可调电容这会发生 过补偿的情况,如图所示我们把 Cc 增大 那么可以看到 它不是圆头圆脑而变成尖头尖脑了这个叫过补偿 除了通过阻抗计算来定量分析补偿原理 我们还可以通过滤波器的原理来分析 那么 Cc 和 R2 对于信号来说是构成一个高通滤波器 它补偿由 R1 和 CIN 构成的低通滤波器的延迟 一个高通加一个低通补偿回去 那么呢这个可调电容实际上 就是位于示波器探头位置的电容 如图所示为实际示波器探头补偿的三种情况 通道一 这是欠补偿的 通道二呢是完全补偿 而通道三呢是过补偿 运放电路中呢也可以使用相位补偿 如图所示呢同相比例放大电路 CNN 呢 C1 为反相输入端的 寄生电容它会引起过冲振铃 我们引入 C2 补偿电容 按照完全补偿计算呢,它应该是 500pF 没有补偿时候 输出电压产生了振铃 那么有补偿时候呢振铃消失 电容补偿同样适用于实际运放的内部延迟情况 那么如图所示的 OPA846 它的同相四倍放大电路 在未补偿的时候我们前面 仿真过是会发生振荡的 那我们给呢 它增加一个 1pF 的补偿电容 无补偿振荡 1 pF 的补偿振荡消失 补偿电容的大小需要精心设计 需要去试,如果太大了呢就会发生过补偿也会振 比如我们增大到 10pF 的时候 振荡 本课小节 示波器探头的相位补偿原理 示波器探头需要分压降压 但是呢它接入探头接入示波器以后 一定会引入一个等效输入电容 电阻和电容构成低通 因此呢会出现这样的圆头圆脑的波形 就是输入方波和输出 却是圆的,就降低带宽了 那么示波器探头相位补偿原理呢 就是增加一个电容 补偿电容 Cc 当满足 电阻比等于电容比反比的时候呢 我们可以得到一个完全补偿公式 根据计算 6pF 可以完全补偿 实际示波器探头 欠补偿、完全补偿、过补偿的波形 1、2、3分别为欠补偿、完全补偿和过补偿 都是我们在实际使用 示波器探头的时候会发生的情况 运放外部延迟的相位补偿 那么当运放外部有延迟的时候 我们根据计算 500pF 刚好可以把它补偿 没有补偿电容时候发生振铃 有补偿以后振铃消失 运放内部的相位补偿也是一样的 增加一个 C1 1pF 那么呢没有补偿电容会振,有补偿电容就不振 好,这节课就到这里
课程介绍 共计80课时,9小时48分45秒

电子电路基础知识讲座

电源 MOSFET 放大器 噪声 电子电路基础 university

本系列课程目前共有80讲,由青岛大学和TI德州仪器联合推出,傅强老师主讲。从模拟及电源出发,系统系列地讲解了电路设计上的基础知识,从多方面多角度给学员提供了全面学习的机会,也是工程师快速查找相关基础知识的便捷手段。

推荐帖子

【我与TI的结缘】+TI运放助力电子大赛
上次和大家聊了一下【我与TI的结缘】的原因,就是因为MSP430单片机, 具体帖子在这里【我与TI的结缘】+MSP430系列单片机 今天在和大家聊聊我曾经用过的TI的一些运放吧,或者说是我前两年做电子大赛时用的TI运放做的一些题吧。                   &n...
High哥 TI技术论坛
【我与TI的结缘】+向来情深,奈何缘浅
哈哈,题目借用了最近很火的《何以笙箫默》里的经典台词,不过用来形容我与TI之间的过往也很合适,我真的非常喜欢TI,不过奈何与它之间的缘分只有半年多。 我是学生物医学工程的,最开始知道TI是在大二的时候,那时候刚进入实验室,在导师的指导下参加了TI赞助的第一届生物医学电子大赛,第一次听说了TI,第一次在TI官网上申请芯片,第一次接触了TI的大学计划。那时就对TI特别有好感,觉得一个这么大的企业选择...
微斯人 TI技术论坛
电阻不再是电阻(转)
    作者: Kenneth Wyatt     电阻不再是电阻——高频时确实如此许多设计师没有意识到实际元件中的寄生因素会影响它们的值。    当频率达到几百兆赫兹时,诸如电阻、电感和电容等基本元件都会呈现出非理想的特性。这种变化在设计滤波器或试图优化供电网络、旁路网络或偏置电路时将变得非常关键。    &nbs...
qwqwqw2088 模拟与混合信号
【SensorTag】the seventh week:找到类似的芯片
本帖最后由 ddllxxrr 于 2014-2-14 14:08 编辑 我本想用手机做主控,但这几天看资料,发现IOS要开发费用地。 我想这有点不值吧,毕竟只是学习阶段对吧,我也不可能去换个安卓手机,那样太蠢。 于是我换过来,我想用SensorTag做服务端,我用一个蓝牙模块去读它。 没事在网上找真地找到了一款芯片,这个芯子就是nRF51822。 Nordic Semiconduc...
ddllxxrr 无线连接
分享到X
微博
QQ
QQ空间
微信

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

 
机器人开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新文章 手机版

站点相关: EEWORLD首页 EE大学堂 论坛 下载中心 Datasheet 活动专区 博客

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2025 EEWORLD.com.cn, Inc. All rights reserved