(01)机器学习与相关数学初步 (02)数理统计与参数估计 (03)矩阵分析与应用 (04)凸优化初步 (05)回归分析与工程应用 (06)特征工程 (07)工作流程与模型调优 (08)最大熵模型与EM算法 (09)推荐系统与应用 (10)聚类算法与应用 (11)决策树随机森林和adaboost (12)SVM (13)贝叶斯方法 (14)主题模型 (15)贝叶斯推理采样与变分 (16)人工神经网络 (17)卷积神经网络 (18)循环神经网络与LSTM (19)Caffe&Tensor Flow&MxNet 简介 (20)贝叶斯网络和HMM (额外补充)词嵌入word embedding
共21课时1天22小时12分36秒