在本课程中,您将从一系列实用的案例研究中获得有关机器学习的动手经验。 在第一门课程的最后,您将研究如何基于房屋特征预测房价,从用户评论中分析情绪,检索感兴趣的文档,推荐产品以及搜索图像。 通过使用这些用例的动手实践,您将能够在广泛的领域中应用机器学习方法。
共116课时8小时3分27秒
随着搜索应用程序,图像识别、App应用、成像、医学、无人机和无人驾驶汽车,计算机视觉在我们的社会中已经变得无处不在。许多这样的应用程序,比如:图片分类、定位和检测的核心功能任务都是视觉识别技术完成的。最新发现的神经网络方法(又名“深度学习”),极大地提升了视觉识别系统的先进性能。
共37课时20小时8分36秒
此课程将广泛介绍机器学习、数据挖掘与统计模式识别的知识。主题包括:(i) 监督学习(参数/非参数算法、支持向量机、内核、神经网络)。(ii) 非监督学习(聚类、降维、推荐系统、深度学习)。(iii) 机器学习的优秀案例(偏差/方差理论;机器学习和人工智能的创新过程)课程将拮取案例研究与应用,学习如何将学习算法应用到智能机器人(观感,控制)、文字理解(网页搜索,防垃圾邮件)、计算机视觉、医学信息学、音频、数据挖掘及其他领域上。
共113课时19小时28分58秒