云计算技术(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
共15课时5小时4分13秒
在本视频中,您将跟随Loren Shure快速入门机器学习算法,并了解三种类型的机器学习(聚类,分类和回归): 聚类——将一组事物分成具有不同属性的组; 分类——用于图像中的对象检测,预测性维护和垃圾邮件检测等应用程序; 回归——用于构建模型,以预测给定其他功能的连续体的响应。 本视频用简单易懂的方法讲解机器学习算法中的线性回归、邻近算法(K-NN)、k均值聚类算法(k-means)、支持向量机(SVM)、判别分析、决策树(Decision Tree)
共7课时15分42秒
介绍各种数字图象处理的算法分析及编程实现技术。 主要内容包括:位图基础、图象的显示、图像的几何变换、图象灰度变换、图像的平滑处理、图像锐化处理及边缘检测、图像分割及测量、图像的形态学处理、图像的变换域处理及应用、图像的合成、24位彩色图像处理、JPEG图像的压缩编码。
共49课时1天4小时20分39秒
Hinton 教授的这门 课程是一门必修课。对所有人,包括初学者和专家都将受益于 Hinton 的观点和思想的广度。
共75课时12小时4分17秒
随着搜索应用程序,图像识别、App应用、成像、医学、无人机和无人驾驶汽车,计算机视觉在我们的社会中已经变得无处不在。许多这样的应用程序,比如:图片分类、定位和检测的核心功能任务都是视觉识别技术完成的。最新发现的神经网络方法(又名“深度学习”),极大地提升了视觉识别系统的先进性能。
共37课时20小时8分36秒
深受好评的台大李宏毅老师讲述的机器学习课程,该课程也是此类教程中非常难得使用中文授课的一门,外语不好的小伙伴儿们有福啦。课程以深度学习为主轴,强调实战性。除了基础知识和算法的讲解,还包含各种相关前沿技术的解读,课程中涉及到的项目都非常新,与时俱进。 李老师讲课注重对基本原理的深入浅出,风趣幽默,举重若轻,常常引用动漫形象进行原理的类比解说,实在是机器学习教程里的一股清流哇~
共35课时1天3小时17分6秒
我们正生活在一个 越来越数字化的世界中。 我们的生活被设备、智能家居等充斥, 而我不觉得这种状况会停止。 我想在一开始就植入更多的人性, 而我有预感,将艺术 带入人工智能研究 就是其中一个方法。
共1课时11分11秒
机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
共46课时15小时18分45秒
该课程主要面向非智能科学与技术专业的学生与各界人士,介绍自然世界中丰富多彩的“自然智能”和由此启发产生的“智能计算”模型与方法,以及形式多样的“智能系统”与日新月异的“智能前沿”,内容涉及生物、医学、遗传、物理、社会与智能科技等多学科知识,以提升科学文化素质、扩展学科知识视野、增强科技创新意识为目标。
共30课时4小时31分34秒
此课程将广泛介绍机器学习、数据挖掘与统计模式识别的知识。主题包括:(i) 监督学习(参数/非参数算法、支持向量机、内核、神经网络)。(ii) 非监督学习(聚类、降维、推荐系统、深度学习)。(iii) 机器学习的优秀案例(偏差/方差理论;机器学习和人工智能的创新过程)课程将拮取案例研究与应用,学习如何将学习算法应用到智能机器人(观感,控制)、文字理解(网页搜索,防垃圾邮件)、计算机视觉、医学信息学、音频、数据挖掘及其他领域上。
共113课时19小时28分58秒
本课程的主题是人工神经网络及其应用。本文中论述人工神经网络的基本单元、网络结构、几种常用的人工神经网络的算法及其在电力系统中的应用。
共4课时1小时26分3秒
(01)机器学习与相关数学初步 (02)数理统计与参数估计 (03)矩阵分析与应用 (04)凸优化初步 (05)回归分析与工程应用 (06)特征工程 (07)工作流程与模型调优 (08)最大熵模型与EM算法 (09)推荐系统与应用 (10)聚类算法与应用 (11)决策树随机森林和adaboost (12)SVM (13)贝叶斯方法 (14)主题模型 (15)贝叶斯推理采样与变分 (16)人工神经网络 (17)卷积神经网络 (18)循环神经网络与LSTM (19)Caffe&Tensor Flow&MxNet 简介 (20)贝叶斯网络和HMM (额外补充)词嵌入word embedding
共21课时1天22小时12分36秒
主要内容:人工智能的定义,树搜索算法,无信息搜索策略,启发式搜索策略,约束满足问题求解,博弈算法,贝叶斯网络,隐马尔可夫模型,卡尔曼滤波器。 特色:人工智能课程在学校的讲授时间为32个学时,面对计算机科学与技术硕士研究生,是一门专业必修课。由于人工智能基础理论涉及到智能搜索,推理,机器学习等,是现在信息类研究生各研究方向的必备理论基础,能为学生深入各方向的研究打下良好的基础。其中的思想可以应用于模式识别,图像视频智能分析处理,数据挖掘及各种信息的智能处理应用中。由于课程讲授侧重于算法的描述,所以学生并不会觉得枯燥,在结合编程的实践练习下能很好掌握智能思想。
共40课时8小时47分20秒
(1)理解机器学习,通过介绍机器学习的基本问题(分类、聚类、回归、降维)介绍经典算法; (2)Python第三方库sklearn(scikit-learn),讲解应用机器学习算法快速解决实际问题的方法。
共27课时3小时17分52秒